Spaces:
Runtime error
Runtime error
File size: 97,709 Bytes
efe0924 6a0a9f7 efe0924 a0e2e84 0a5ce48 a0e2e84 8910711 0a5ce48 83d9f95 efe0924 8910711 efe0924 b38cab2 efe0924 190bc9c efe0924 0a5ce48 190bc9c 0a5ce48 b38cab2 efe0924 83d9f95 8910711 83d9f95 efe0924 83d9f95 efe0924 83d9f95 efe0924 83d9f95 efe0924 83d9f95 efe0924 83d9f95 efe0924 83d9f95 efe0924 83d9f95 efe0924 83d9f95 0a5ce48 efe0924 8910711 dc1d7fe 8910711 5cf48e0 efe0924 8910711 83d9f95 efe0924 83d9f95 efe0924 83d9f95 efe0924 8910711 efe0924 8910711 efe0924 8910711 efe0924 8910711 efe0924 8910711 efe0924 8910711 efe0924 8910711 efe0924 8910711 efe0924 8910711 efe0924 0a5ce48 8910711 efe0924 8910711 a0e2e84 efe0924 a0e2e84 efe0924 a0e2e84 efe0924 a0e2e84 efe0924 8910711 efe0924 8910711 efe0924 8910711 efe0924 8910711 efe0924 0a5ce48 8910711 efe0924 8910711 a0e2e84 efe0924 8910711 efe0924 8910711 efe0924 8910711 efe0924 8910711 efe0924 5cf48e0 0a5ce48 8910711 83d9f95 efe0924 0a5ce48 5cf48e0 0a5ce48 efe0924 5cf48e0 efe0924 5cf48e0 efe0924 0a5ce48 5cf48e0 efe0924 5cf48e0 0a5ce48 8910711 efe0924 8910711 efe0924 8910711 efe0924 8910711 efe0924 8910711 efe0924 8910711 efe0924 8910711 5cf48e0 6a0a9f7 a0e2e84 5cf48e0 6a0a9f7 efe0924 a0e2e84 b38cab2 6a0a9f7 a0e2e84 6a0a9f7 a0e2e84 efe0924 8910711 efe0924 8910711 efe0924 8910711 efe0924 8910711 83d9f95 8910711 efe0924 8910711 efe0924 8910711 efe0924 8910711 efe0924 8910711 efe0924 8910711 efe0924 8910711 efe0924 8910711 efe0924 8910711 efe0924 8910711 efe0924 8910711 efe0924 8910711 efe0924 8910711 efe0924 8910711 efe0924 83d9f95 0a5ce48 5cf48e0 8910711 83d9f95 8910711 efe0924 8910711 efe0924 8910711 efe0924 8910711 efe0924 8910711 efe0924 8910711 efe0924 8910711 efe0924 8910711 5cf48e0 8910711 efe0924 8910711 efe0924 8910711 efe0924 8910711 efe0924 8910711 efe0924 b38cab2 efe0924 8910711 efe0924 8910711 efe0924 8910711 efe0924 8910711 efe0924 b38cab2 efe0924 8910711 efe0924 8910711 efe0924 8910711 efe0924 8910711 efe0924 b38cab2 8910711 b38cab2 efe0924 0a5ce48 efe0924 5cf48e0 efe0924 8910711 dc1d7fe 8910711 5cf48e0 8910711 5cf48e0 efe0924 8a46296 efe0924 b38cab2 efe0924 b38cab2 efe0924 83d9f95 efe0924 8910711 efe0924 83d9f95 efe0924 83d9f95 8910711 efe0924 a0e2e84 6a0a9f7 2f10edd efe0924 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 |
import functools
import inspect
import sys
import os
import traceback
import typing
from utils import set_seed, flatten_list, clear_torch_cache, system_info_print, zip_data, save_generate_output, s3up
SEED = 1236
set_seed(SEED)
os.environ['HF_HUB_DISABLE_TELEMETRY'] = '1'
from typing import Union
import numpy as np
import pandas as pd
import fire
import torch
from peft import PeftModel
from transformers import GenerationConfig, StoppingCriteriaList, AutoModel
from accelerate import init_empty_weights, infer_auto_device_map
from prompter import Prompter
from finetune import get_loaders, example_data_points, generate_prompt, get_githash, prompt_types_strings, \
human, bot, prompt_type_to_model_name, inv_prompt_type_to_model_lower
from stopping import CallbackToGenerator, Stream, StoppingCriteriaSub
is_hf = bool(os.getenv("HUGGINGFACE_SPACES"))
is_gpth2oai = bool(os.getenv("GPT_H2O_AI"))
is_public = is_hf or is_gpth2oai # multi-user case with fixed model and disclaimer
is_low_mem = is_hf # assumes run on 24GB consumer GPU
admin_pass = os.getenv("ADMIN_PASS")
# will sometimes appear in UI or sometimes actual generation, but maybe better than empty result
raise_generate_gpu_exceptions = True
eval_extra_columns = ['prompt', 'response', 'score']
def main(
load_8bit: bool = False,
load_half: bool = True,
infer_devices: bool = True,
base_model: str = '',
tokenizer_base_model: str = '',
lora_weights: str = "",
gpu_id: int = 0, # if infer_devices = True and gpu_id != -1
prompt_type: Union[int, str] = None,
# input to generation
temperature: float = None,
top_p: float = None,
top_k: int = None,
num_beams: int = None,
repetition_penalty: float = None,
num_return_sequences: int = None,
do_sample: bool = None,
max_new_tokens: int = None,
min_new_tokens: int = None,
early_stopping: Union[bool, str] = None,
max_time: float = None,
llama_type: bool = None,
debug: bool = False,
save_dir: str = None,
share: bool = True,
local_files_only: bool = False,
resume_download: bool = True,
use_auth_token: Union[str, bool] = False, # True requires CLI did huggingface-cli login before running
src_lang: str = "English",
tgt_lang: str = "Russian",
gradio: bool = True,
gradio_avoid_processing_markdown: bool = False,
chat: bool = True,
chat_history: int = 4096, # character length of chat context/history
stream_output: bool = True,
show_examples: bool = None,
verbose: bool = False,
h2ocolors: bool = True,
height: int = 400,
show_lora: bool = True,
# set to True to load --base_model after client logs in,
# to be able to free GPU memory when model is swapped
login_mode_if_model0: bool = False,
sanitize_user_prompt: bool = True,
sanitize_bot_response: bool = True,
extra_model_options: typing.List[str] = [],
extra_lora_options: typing.List[str] = [],
score_model: str = 'OpenAssistant/reward-model-deberta-v3-large-v2',
auto_score: bool = True,
eval_sharegpt_prompts_only: int = 0,
eval_sharegpt_prompts_only_seed: int = 1234,
eval_sharegpt_as_output: bool = False,
):
# allow set token directly
use_auth_token = os.environ.get("HUGGINGFACE_API_TOKEN", use_auth_token)
if is_public:
temperature = 0.4
top_p = 0.85
top_k = 70
do_sample = True
if is_low_mem:
base_model = 'h2oai/h2ogpt-oasst1-512-12b'
load_8bit = True
else:
base_model = 'h2oai/h2ogpt-oasst1-512-20b'
if is_low_mem:
load_8bit = True
if is_hf:
# must override share if in spaces
share = False
save_dir = os.getenv('SAVE_DIR', save_dir)
# get defaults
model_lower = base_model.lower()
if not gradio:
# force, else not single response like want to look at
stream_output = False
# else prompt removal can mess up output
chat = False
placeholder_instruction, placeholder_input, \
stream_output, show_examples, \
prompt_type, temperature, top_p, top_k, num_beams, \
max_new_tokens, min_new_tokens, early_stopping, max_time, \
repetition_penalty, num_return_sequences, \
do_sample, \
src_lang, tgt_lang, \
examples, \
task_info = \
get_generate_params(model_lower, chat,
stream_output, show_examples,
prompt_type, temperature, top_p, top_k, num_beams,
max_new_tokens, min_new_tokens, early_stopping, max_time,
repetition_penalty, num_return_sequences,
do_sample,
)
if not gradio:
if eval_sharegpt_prompts_only > 0:
# override default examples with shareGPT ones for human-level eval purposes only
eval_filename = 'ShareGPT_V3_unfiltered_cleaned_split_no_imsorry.json'
if not os.path.isfile(eval_filename):
os.system(
'wget https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/%s' % eval_filename)
import json
data = json.load(open(eval_filename, 'rt'))
# focus on data that starts with human, else likely chopped from other data
turn_start = 0 # odd in general
data = [x for x in data if len(x['conversations']) > turn_start + 1 and
x['conversations'][turn_start]['from'] == 'human' and
x['conversations'][turn_start + 1]['from'] == 'gpt']
np.random.seed(eval_sharegpt_prompts_only_seed)
example1 = examples[-1] # pick reference example
examples = []
responses = []
for i in list(np.random.randint(0, len(data), size=eval_sharegpt_prompts_only)):
assert data[i]['conversations'][turn_start]['from'] == 'human'
instruction = data[i]['conversations'][turn_start]['value']
assert data[i]['conversations'][turn_start + 1]['from'] == 'gpt'
output = data[i]['conversations'][turn_start + 1]['value']
examplenew = example1.copy()
assert not chat, "No gradio must use chat=False, uses nochat isntruct"
examplenew[eval_func_param_names.index('instruction_nochat')] = instruction
examplenew[eval_func_param_names.index('iinput_nochat')] = '' # no input
examplenew[eval_func_param_names.index('context')] = '' # no context
examples.append(examplenew)
responses.append(output)
num_examples = len(examples)
scoring_path = 'scoring'
os.makedirs(scoring_path, exist_ok=True)
if eval_sharegpt_as_output:
used_base_model = 'gpt35'
used_lora_weights = ''
else:
used_base_model = str(base_model.split('/')[-1])
used_lora_weights = str(lora_weights.split('/')[-1])
eval_filename = "df_scores_%s_%s_%s_%s_%s_%s.parquet" % (num_examples, eval_sharegpt_prompts_only,
eval_sharegpt_prompts_only_seed,
eval_sharegpt_as_output,
used_base_model,
used_lora_weights)
eval_filename = os.path.join(scoring_path, eval_filename)
with torch.device("cuda"):
# ensure was set right above before examples generated
assert not stream_output, "stream_output=True does not make sense with example loop"
import time
from functools import partial
# get score model
smodel, stokenizer, sdevice = get_score_model(**locals())
if not eval_sharegpt_as_output:
model, tokenizer, device = get_model(**locals())
model_state = [model, tokenizer, device, base_model]
fun = partial(evaluate, model_state, debug=debug, save_dir=save_dir)
else:
assert eval_sharegpt_prompts_only > 0
def get_response(*args, exi=0):
# assumes same ordering of examples and responses
yield responses[exi]
fun = get_response
t0 = time.time()
score_dump = []
import matplotlib.pyplot as plt
for exi, ex in enumerate(examples):
instruction = ex[eval_func_param_names.index('instruction_nochat')]
iinput = ex[eval_func_param_names.index('iinput_nochat')]
context = ex[eval_func_param_names.index('context')]
clear_torch_cache()
print("")
print("START" + "=" * 100)
print("Question: %s %s" % (instruction, ('input=%s' % iinput if iinput else '')))
print("-" * 105)
# fun yields as generator, so have to iterate over it
# Also means likely do NOT want --stream_output=True, else would show all generations
for res in fun(*tuple(ex), exi=exi):
print(res)
if smodel:
score_with_prompt = False
if score_with_prompt:
data_point = dict(instruction=instruction, input=iinput, context=context)
prompter = Prompter(prompt_type, debug=debug, chat=chat, stream_output=stream_output)
prompt = prompter.generate_prompt(data_point)
else:
# just raw input and output
assert iinput in [None, ''] # should be no iinput
assert context in [None, ''] # should be no context
prompt = instruction
cutoff_len = 768 if is_low_mem else 2048
inputs = stokenizer(prompt, res,
return_tensors="pt",
truncation=True,
max_length=cutoff_len)
try:
score = torch.sigmoid(smodel(**inputs).logits[0]).cpu().detach().numpy()[0]
except torch.cuda.OutOfMemoryError as e:
print("GPU OOM: question: %s answer: %s exception: %s" % (prompt, res, str(e)), flush=True)
traceback.print_exc()
score = 0.0
clear_torch_cache()
except (Exception, RuntimeError) as e:
if 'Expected all tensors to be on the same device' in str(e) or \
'expected scalar type Half but found Float' in str(e) or \
'probability tensor contains either' in str(e) or \
'cublasLt ran into an error!' in str(e):
print("GPU error: question: %s answer: %s exception: %s" % (prompt, res, str(e)),
flush=True)
traceback.print_exc()
score = 0.0
clear_torch_cache()
else:
raise
print("SCORE %s: %s" % (exi, score), flush=True)
score_dump.append(ex + [prompt, res, score])
# dump every score in case abort
df_scores = pd.DataFrame(score_dump,
columns=eval_func_param_names + eval_extra_columns)
df_scores.to_parquet(eval_filename, index=False)
# plot histogram so far
plt.figure(figsize=(10, 10))
plt.hist(df_scores['score'], bins=20)
score_avg = np.mean(df_scores['score'])
score_median = np.median(df_scores['score'])
plt.title("Score avg: %s median: %s" % (score_avg, score_median))
plt.savefig(eval_filename.replace('.parquet', '.png'))
plt.close()
print("END" + "=" * 102)
print("")
t2 = time.time()
print("Time taken so far: %.4f about %.4g per example" % (t2 - t0, (t2 - t0) / (1 + exi)))
t1 = time.time()
print("Total time taken: %.4f about %.4g per example" % (t1 - t0, (t1 - t0) / num_examples))
return eval_filename
if gradio:
go_gradio(**locals())
def get_device():
if torch.cuda.is_available():
device = "cuda"
else:
raise RuntimeError("only cuda supported")
return device
def get_non_lora_model(base_model, model_loader, load_half, model_kwargs, reward_type,
gpu_id=0,
use_auth_token=False):
"""
Ensure model gets on correct device
:param base_model:
:param model_loader:
:param load_half:
:param model_kwargs:
:param reward_type:
:param gpu_id:
:param use_auth_token:
:return:
"""
with init_empty_weights():
from transformers import AutoConfig
config = AutoConfig.from_pretrained(base_model, use_auth_token=use_auth_token)
model = AutoModel.from_config(
config,
)
# NOTE: Can specify max_memory={0: max_mem, 1: max_mem}, to shard model
# NOTE: Some models require avoiding sharding some layers,
# then would pass no_split_module_classes and give list of those layers.
device_map = infer_auto_device_map(
model,
dtype=torch.float16 if load_half else torch.float32,
)
if hasattr(model, 'model'):
device_map_model = infer_auto_device_map(
model.model,
dtype=torch.float16 if load_half else torch.float32,
)
device_map.update(device_map_model)
print('device_map: %s' % device_map, flush=True)
if gpu_id >= 0:
# FIXME: If really distributes model, tend to get things like: ValueError: gpt_neox.embed_in.weight doesn't have any device set.
# So avoid for now, just put on first GPU, unless score_model, put on last
n_gpus = torch.cuda.device_count()
if reward_type:
device_map = {'': n_gpus - 1}
else:
device_map = {'': min(n_gpus - 1, gpu_id)}
load_in_8bit = model_kwargs.get('load_in_8bit', False)
model_kwargs['device_map'] = device_map
if load_in_8bit or not load_half:
model = model_loader.from_pretrained(
base_model,
**model_kwargs,
)
else:
model = model_loader.from_pretrained(
base_model,
**model_kwargs,
).half()
return model
def get_model(
load_8bit: bool = False,
load_half: bool = True,
infer_devices: bool = True,
base_model: str = '',
tokenizer_base_model: str = '',
lora_weights: str = "",
gpu_id: int = 0,
llama_type: bool = None,
reward_type: bool = None,
local_files_only: bool = False,
resume_download: bool = True,
use_auth_token: Union[str, bool] = False,
compile: bool = True,
**kwargs,
):
"""
:param load_8bit: load model in 8-bit, not supported by all models
:param load_half: load model in 16-bit
:param infer_devices: Use torch infer of optimal placement of layers on devices (for non-lora case)
For non-LORA case, False will spread shards across multiple GPUs, but this can lead to cuda:x cuda:y mismatches
So it is not the default
:param base_model: name/path of base model
:param tokenizer_base_model: name/path of tokenizer
:param lora_weights: name/path
:param gpu_id: which GPU (0..n_gpus-1) or allow all GPUs if relevant (-1)
:param llama_type: whether LLaMa type model
:param reward_type: reward type model for sequence classification
:param local_files_only: use local files instead of from HF
:param resume_download: resume downloads from HF
:param use_auth_token: assumes user did on CLI `huggingface-cli login` to access private repo
:parm compile: whether to compile torch model
:param kwargs:
:return:
"""
print("Get %s model" % base_model, flush=True)
if lora_weights is not None and lora_weights.strip():
print("Get %s lora weights" % lora_weights, flush=True)
device = get_device()
if 'gpt2' in base_model.lower():
# RuntimeError: where expected condition to be a boolean tensor, but got a tensor with dtype Half
load_8bit = False
assert base_model.strip(), (
"Please choose a base model with --base_model (CLI) or in Models Tab (gradio)"
)
llama_type = llama_type or "llama" in base_model
model_loader, tokenizer_loader = get_loaders(llama_type=llama_type, model_name=base_model, reward_type=reward_type)
if not tokenizer_base_model:
tokenizer_base_model = base_model
if tokenizer_loader is not None and not isinstance(tokenizer_loader, str):
tokenizer = tokenizer_loader.from_pretrained(tokenizer_base_model,
local_files_only=local_files_only,
resume_download=resume_download,
use_auth_token=use_auth_token,
)
else:
tokenizer = tokenizer_loader
if isinstance(tokenizer, str):
# already a pipeline, tokenizer_loader is string for task
model = model_loader(tokenizer,
model=base_model,
device=0 if device == "cuda" else -1,
torch_dtype=torch.float16)
else:
assert device == "cuda", "Unsupported device %s" % device
model_kwargs = dict(local_files_only=local_files_only,
torch_dtype=torch.float16,
resume_download=resume_download,
use_auth_token=use_auth_token)
if 'mbart-' not in base_model.lower():
model_kwargs.update(dict(load_in_8bit=load_8bit,
device_map={"": 0} if load_8bit else "auto",
))
if 'OpenAssistant/reward-model'.lower() in base_model.lower():
# could put on other GPUs
model_kwargs['device_map'] = {"": 0}
model_kwargs.pop('torch_dtype', None)
if not lora_weights:
with torch.device("cuda"):
if infer_devices:
model = get_non_lora_model(base_model, model_loader, load_half, model_kwargs, reward_type,
gpu_id=gpu_id, use_auth_token=use_auth_token)
else:
if load_half and not load_8bit:
model = model_loader.from_pretrained(
base_model,
**model_kwargs).half()
else:
model = model_loader.from_pretrained(
base_model,
**model_kwargs)
elif load_8bit:
model = model_loader.from_pretrained(
base_model,
**model_kwargs
)
model = PeftModel.from_pretrained(
model,
lora_weights,
torch_dtype=torch.float16,
local_files_only=local_files_only,
resume_download=resume_download,
use_auth_token=use_auth_token,
device_map={"": 0}, # seems to be required
)
else:
with torch.device("cuda"):
model = model_loader.from_pretrained(
base_model,
**model_kwargs
)
model = PeftModel.from_pretrained(
model,
lora_weights,
torch_dtype=torch.float16,
local_files_only=local_files_only,
resume_download=resume_download,
use_auth_token=use_auth_token,
device_map="auto",
)
if load_half:
model.half()
# unwind broken decapoda-research config
if llama_type:
model.config.pad_token_id = tokenizer.pad_token_id = 0 # unk
model.config.bos_token_id = 1
model.config.eos_token_id = 2
if 'gpt2' in base_model.lower():
# add special tokens that otherwise all share the same id
tokenizer.add_special_tokens({'bos_token': '<bos>',
'eos_token': '<eos>',
'pad_token': '<pad>'})
if not isinstance(tokenizer, str):
model.eval()
if torch.__version__ >= "2" and sys.platform != "win32" and compile:
model = torch.compile(model)
return model, tokenizer, device
def get_score_model(**kwargs):
# score model
if kwargs.get('score_model') is not None and kwargs.get('score_model').strip():
score_all_kwargs = kwargs.copy()
score_all_kwargs['load_8bit'] = False
score_all_kwargs['load_half'] = False
score_all_kwargs['base_model'] = kwargs.get('score_model').strip()
score_all_kwargs['tokenizer_base_model'] = ''
score_all_kwargs['lora_weights'] = ''
score_all_kwargs['llama_type'] = False
score_all_kwargs['compile'] = False
smodel, stokenizer, sdevice = get_model(**score_all_kwargs)
else:
smodel, stokenizer, sdevice = None, None, None
return smodel, stokenizer, sdevice
def go_gradio(**kwargs):
# get default model
all_kwargs = kwargs.copy()
all_kwargs.update(locals())
if kwargs.get('base_model') and not kwargs['login_mode_if_model0']:
model0, tokenizer0, device = get_model(**all_kwargs)
else:
# if empty model, then don't load anything, just get gradio up
model0, tokenizer0, device = None, None, None
model_state0 = [model0, tokenizer0, device, kwargs['base_model']]
# get score model
smodel, stokenizer, sdevice = get_score_model(**all_kwargs)
if 'mbart-' in kwargs['model_lower']:
instruction_label_nochat = "Text to translate"
else:
instruction_label_nochat = "Instruction"
instruction_label = "You (Shift-Enter or push Submit to send message)"
title = 'h2oGPT'
if kwargs['verbose']:
description = f"""Model {kwargs['base_model']} Instruct dataset.
For more information, visit [the project's website](https://github.com/h2oai/h2ogpt).
Command: {str(' '.join(sys.argv))}
Hash: {get_githash()}
"""
else:
description = "For more information, visit [the project's website](https://github.com/h2oai/h2ogpt).<br>"
if is_public:
description += """<p><b> DISCLAIMERS: </b><ul><i><li>The model was trained on The Pile and other data, which may contain objectionable content. Use at own risk.</i></li>"""
if kwargs['load_8bit']:
description += """<i><li> Model is loaded in 8-bit and has other restrictions on this host. UX can be worse than non-hosted version.</i></li>"""
description += """<i><li>Conversations may be used to improve h2oGPT. Do not share sensitive information.</i></li>"""
description += """<i><li>By using h2oGPT, you accept our [Terms of Service](https://github.com/h2oai/h2ogpt/blob/main/tos.md).</i></li></ul></p>"""
if kwargs['verbose']:
task_info_md = f"""
### Task: {kwargs['task_info']}"""
else:
task_info_md = ''
css_code = """footer {visibility: hidden;}
body{background:linear-gradient(#f5f5f5,#e5e5e5);}
body.dark{background:linear-gradient(#0d0d0d,#333333);}"""
from gradio.themes.utils import Color, colors, fonts, sizes
if kwargs['h2ocolors']:
h2o_yellow = Color(
name="yellow",
c50="#fffef2",
c100="#fff9e6",
c200="#ffecb3",
c300="#ffe28c",
c400="#ffd659",
c500="#fec925",
c600="#e6ac00",
c700="#bf8f00",
c800="#a67c00",
c900="#664d00",
c950="#403000",
)
h2o_gray = Color(
name="gray",
c50="#f2f2f2",
c100="#e5e5e5",
c200="#cccccc",
c300="#b2b2b2",
c400="#999999",
c500="#7f7f7f",
c600="#666666",
c700="#4c4c4c",
c800="#333333",
c900="#191919",
c950="#0d0d0d",
)
colors_dict = dict(primary_hue=h2o_yellow,
secondary_hue=h2o_yellow,
neutral_hue=h2o_gray,
spacing_size=sizes.spacing_md,
radius_size=sizes.radius_md,
text_size=sizes.text_md,
)
else:
colors_dict = dict(primary_hue=colors.indigo,
secondary_hue=colors.indigo,
neutral_hue=colors.gray,
spacing_size=sizes.spacing_md,
radius_size=sizes.radius_md,
text_size=sizes.text_md,
)
import gradio as gr
if kwargs['gradio_avoid_processing_markdown']:
from gradio_client import utils as client_utils
from gradio.components import Chatbot
# gradio has issue with taking too long to process input/output for markdown etc.
# Avoid for now, allow raw html to render, good enough for chatbot.
def _postprocess_chat_messages(self, chat_message: str):
if chat_message is None:
return None
elif isinstance(chat_message, (tuple, list)):
filepath = chat_message[0]
mime_type = client_utils.get_mimetype(filepath)
filepath = self.make_temp_copy_if_needed(filepath)
return {
"name": filepath,
"mime_type": mime_type,
"alt_text": chat_message[1] if len(chat_message) > 1 else None,
"data": None, # These last two fields are filled in by the frontend
"is_file": True,
}
elif isinstance(chat_message, str):
return chat_message
else:
raise ValueError(f"Invalid message for Chatbot component: {chat_message}")
Chatbot._postprocess_chat_messages = _postprocess_chat_messages
demo = gr.Blocks(theme=gr.themes.Soft(**colors_dict), css=css_code, title="h2oGPT", analytics_enabled=False)
callback = gr.CSVLogger()
# css_code = 'body{background-image:url("https://h2o.ai/content/experience-fragments/h2o/us/en/site/header/master/_jcr_content/root/container/header_copy/logo.coreimg.svg/1678976605175/h2o-logo.svg");}'
# demo = gr.Blocks(theme='gstaff/xkcd', css=css_code)
model_options = flatten_list(list(prompt_type_to_model_name.values())) + kwargs['extra_model_options']
if kwargs['base_model'].strip() not in model_options:
lora_options = [kwargs['base_model'].strip()] + model_options
lora_options = kwargs['extra_lora_options']
if kwargs['lora_weights'].strip() not in lora_options:
lora_options = [kwargs['lora_weights'].strip()] + lora_options
# always add in no lora case
# add fake space so doesn't go away in gradio dropdown
no_lora_str = no_model_str = '[None/Remove]'
lora_options = [no_lora_str] + kwargs['extra_lora_options'] # FIXME: why double?
# always add in no model case so can free memory
# add fake space so doesn't go away in gradio dropdown
model_options = [no_model_str] + model_options
# transcribe, will be detranscribed before use by evaluate()
if not kwargs['lora_weights'].strip():
kwargs['lora_weights'] = no_lora_str
if not kwargs['base_model'].strip():
kwargs['base_model'] = no_model_str
# transcribe for gradio
kwargs['gpu_id'] = str(kwargs['gpu_id'])
no_model_msg = 'h2oGPT [ !!! Please Load Model in Models Tab !!! ]'
output_label0 = f'h2oGPT [Model: {kwargs.get("base_model")}]' if kwargs.get(
'base_model') else no_model_msg
output_label0_model2 = no_model_msg
with demo:
# avoid actual model/tokenizer here or anything that would be bad to deepcopy
# https://github.com/gradio-app/gradio/issues/3558
model_state = gr.State(['model', 'tokenizer', device, kwargs['base_model']])
model_state2 = gr.State([None, None, None, None])
model_options_state = gr.State([model_options])
lora_options_state = gr.State([lora_options])
gr.Markdown(
f"""
<h1 align="center"> {title}</h1>
{description}
{task_info_md}
""")
if is_hf:
gr.HTML(
'''<center><a href="https://huggingface.co/spaces/h2oai/h2ogpt-chatbot?duplicate=true"><img src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a>Duplicate this Space to skip the queue and run in a private space</center>''')
# go button visible if
base_wanted = kwargs['base_model'] != no_model_str and kwargs['login_mode_if_model0']
go_btn = gr.Button(value="ENTER", visible=base_wanted, variant="primary")
normal_block = gr.Row(visible=not base_wanted)
with normal_block:
with gr.Tabs():
with gr.Row():
col_nochat = gr.Column(visible=not kwargs['chat'])
with col_nochat: # FIXME: for model comparison, and check rest
text_output_nochat = gr.Textbox(lines=5, label=output_label0)
instruction_nochat = gr.Textbox(
lines=4, label=instruction_label_nochat,
placeholder=kwargs['placeholder_instruction'],
)
iinput_nochat = gr.Textbox(lines=4, label="Input context for Instruction",
placeholder=kwargs['placeholder_input'])
submit_nochat = gr.Button("Submit")
flag_btn_nochat = gr.Button("Flag")
if kwargs['score_model']:
if not kwargs['auto_score']:
with gr.Column():
score_btn_nochat = gr.Button("Score last prompt & response")
score_text_nochat = gr.Textbox("Response Score: NA", show_label=False)
else:
score_text_nochat = gr.Textbox("Response Score: NA", show_label=False)
col_chat = gr.Column(visible=kwargs['chat'])
with col_chat:
with gr.Row():
text_output = gr.Chatbot(label=output_label0).style(height=kwargs['height'] or 400)
text_output2 = gr.Chatbot(label=output_label0_model2, visible=False).style(
height=kwargs['height'] or 400)
with gr.Row():
with gr.Column(scale=50):
instruction = gr.Textbox(
lines=4, label=instruction_label,
placeholder=kwargs['placeholder_instruction'],
)
with gr.Row(): # .style(equal_height=False, equal_width=False):
submit = gr.Button(value='Submit').style(full_width=False, size='sm')
stop_btn = gr.Button(value="Stop").style(full_width=False, size='sm')
with gr.Row():
clear = gr.Button("New Conversation")
flag_btn = gr.Button("Flag")
if kwargs['score_model']:
if not kwargs['auto_score']: # FIXME: For checkbox model2
with gr.Column():
with gr.Row():
score_btn = gr.Button("Score last prompt & response").style(
full_width=False, size='sm')
score_text = gr.Textbox("Response Score: NA", show_label=False)
score_res2 = gr.Row(visible=False)
with score_res2:
score_btn2 = gr.Button("Score last prompt & response 2").style(
full_width=False, size='sm')
score_text2 = gr.Textbox("Response Score2: NA", show_label=False)
else:
score_text = gr.Textbox("Response Score: NA", show_label=False)
score_text2 = gr.Textbox("Response Score2: NA", show_label=False, visible=False)
retry = gr.Button("Regenerate")
undo = gr.Button("Undo")
with gr.TabItem("Input/Output"):
with gr.Row():
if 'mbart-' in kwargs['model_lower']:
src_lang = gr.Dropdown(list(languages_covered().keys()),
value=kwargs['src_lang'],
label="Input Language")
tgt_lang = gr.Dropdown(list(languages_covered().keys()),
value=kwargs['tgt_lang'],
label="Output Language")
with gr.TabItem("Expert"):
with gr.Row():
with gr.Column():
stream_output = gr.components.Checkbox(label="Stream output",
value=kwargs['stream_output'])
prompt_type = gr.Dropdown(prompt_types_strings,
value=kwargs['prompt_type'], label="Prompt Type",
visible=not is_public)
prompt_type2 = gr.Dropdown(prompt_types_strings,
value=kwargs['prompt_type'], label="Prompt Type Model 2",
visible=not is_public and False)
do_sample = gr.Checkbox(label="Sample", info="Enable sampler, required for use of temperature, top_p, top_k",
value=kwargs['do_sample'])
temperature = gr.Slider(minimum=0.01, maximum=3,
value=kwargs['temperature'],
label="Temperature",
info="Lower is deterministic (but may lead to repeats), Higher more creative (but may lead to hallucinations)")
top_p = gr.Slider(minimum=0, maximum=1,
value=kwargs['top_p'], label="Top p",
info="Cumulative probability of tokens to sample from")
top_k = gr.Slider(
minimum=0, maximum=100, step=1,
value=kwargs['top_k'], label="Top k",
info='Num. tokens to sample from'
)
max_beams = 8 if not is_low_mem else 2
num_beams = gr.Slider(minimum=1, maximum=max_beams, step=1,
value=min(max_beams, kwargs['num_beams']), label="Beams",
info="Number of searches for optimal overall probability. "
"Uses more GPU memory/compute")
max_max_new_tokens = 2048 if not is_low_mem else kwargs['max_new_tokens']
max_new_tokens = gr.Slider(
minimum=1, maximum=max_max_new_tokens, step=1,
value=min(max_max_new_tokens, kwargs['max_new_tokens']), label="Max output length",
)
min_new_tokens = gr.Slider(
minimum=0, maximum=max_max_new_tokens, step=1,
value=min(max_max_new_tokens, kwargs['min_new_tokens']), label="Min output length",
)
early_stopping = gr.Checkbox(label="EarlyStopping", info="Stop early in beam search",
value=kwargs['early_stopping'])
max_max_time = 60 * 5 if not is_low_mem else 60
max_time = gr.Slider(minimum=0, maximum=max_max_time, step=1,
value=min(max_max_time, kwargs['max_time']), label="Max. time",
info="Max. time to search optimal output.")
repetition_penalty = gr.Slider(minimum=0.01, maximum=3.0,
value=kwargs['repetition_penalty'],
label="Repetition Penalty")
num_return_sequences = gr.Slider(minimum=1, maximum=10, step=1,
value=kwargs['num_return_sequences'],
label="Number Returns", info="Must be <= num_beams",
visible=not is_public)
iinput = gr.Textbox(lines=4, label="Input",
placeholder=kwargs['placeholder_input'],
visible=not is_public)
context = gr.Textbox(lines=3, label="System Pre-Context",
info="Directly pre-appended without prompt processing",
visible=not is_public and not kwargs['chat'])
chat = gr.components.Checkbox(label="Chat mode", value=kwargs['chat'],
visible=not is_public)
with gr.TabItem("Models"):
load_msg = "Load-Unload Model/LORA" if not is_public \
else "LOAD-UNLOAD DISABLED FOR HOSTED DEMO"
load_msg2 = "Load-Unload Model/LORA 2" if not is_public \
else "LOAD-UNLOAD DISABLED FOR HOSTED DEMO 2"
compare_checkbox = gr.components.Checkbox(label="Compare Mode",
value=False, visible=not is_public)
with gr.Row():
n_gpus = torch.cuda.device_count()
n_gpus_list = [str(x) for x in list(range(-1, n_gpus))]
with gr.Column():
with gr.Row(scale=1):
with gr.Column(scale=50):
model_choice = gr.Dropdown(model_options_state.value[0], label="Choose Model",
value=kwargs['base_model'])
lora_choice = gr.Dropdown(lora_options_state.value[0], label="Choose LORA",
value=kwargs['lora_weights'], visible=kwargs['show_lora'])
with gr.Column(scale=1):
load_model_button = gr.Button(load_msg)
model_load8bit_checkbox = gr.components.Checkbox(
label="Load 8-bit [Not all models support]",
value=kwargs['load_8bit'])
model_infer_devices_checkbox = gr.components.Checkbox(
label="Infer Devices [If GPU ID=-1 or not Checked, then will spread model over GPUs]",
value=kwargs['infer_devices'])
model_gpu = gr.Dropdown(n_gpus_list, label="GPU ID [-1 = all GPUs]",
value=kwargs['gpu_id'])
model_used = gr.Textbox(label="Current Model", value=kwargs['base_model'])
lora_used = gr.Textbox(label="Current LORA", value=kwargs['lora_weights'],
visible=kwargs['show_lora'])
with gr.Row(scale=1):
with gr.Column(scale=50):
new_model = gr.Textbox(label="New Model HF name/path")
new_lora = gr.Textbox(label="New LORA HF name/path", visible=kwargs['show_lora'])
with gr.Column(scale=1):
add_model_button = gr.Button("Add new model name")
add_lora_button = gr.Button("Add new LORA name", visible=kwargs['show_lora'])
col_model2 = gr.Column(visible=False)
with col_model2:
with gr.Row(scale=1):
with gr.Column(scale=50):
model_choice2 = gr.Dropdown(model_options_state.value[0], label="Choose Model 2",
value=no_model_str)
lora_choice2 = gr.Dropdown(lora_options_state.value[0], label="Choose LORA 2",
value=no_lora_str,
visible=kwargs['show_lora'])
with gr.Column(scale=1):
load_model_button2 = gr.Button(load_msg2)
model_load8bit_checkbox2 = gr.components.Checkbox(
label="Load 8-bit 2 [Not all models support]",
value=kwargs['load_8bit'])
model_infer_devices_checkbox2 = gr.components.Checkbox(
label="Infer Devices 2 [If GPU ID=-1 or not Checked, then will spread model over GPUs]",
value=kwargs[
'infer_devices'])
model_gpu2 = gr.Dropdown(n_gpus_list, label="GPU ID [-1 = all GPUs]",
value=kwargs['gpu_id'])
# no model/lora loaded ever in model2 by default
model_used2 = gr.Textbox(label="Current Model 2", value=no_model_str)
lora_used2 = gr.Textbox(label="Current LORA 2", value=no_lora_str,
visible=kwargs['show_lora'])
with gr.TabItem("System"):
admin_row = gr.Row()
with admin_row:
admin_pass_textbox = gr.Textbox(label="Admin Password", type='password', visible=is_public)
admin_btn = gr.Button(value="Admin Access", visible=is_public)
system_row = gr.Row(visible=not is_public)
with system_row:
with gr.Column():
with gr.Row():
system_btn = gr.Button(value='Get System Info')
system_text = gr.Textbox(label='System Info')
with gr.Row():
zip_btn = gr.Button("Zip")
zip_text = gr.Textbox(label="Zip file name")
file_output = gr.File()
with gr.Row():
s3up_btn = gr.Button("S3UP")
s3up_text = gr.Textbox(label='S3UP result')
# Get flagged data
zip_data1 = functools.partial(zip_data, root_dirs=['flagged_data_points', kwargs['save_dir']])
zip_btn.click(zip_data1, inputs=None, outputs=[file_output, zip_text])
#def update_s3(x):
# return gr.update(value="S3UP [%s]" % x)
s3up_btn.click(s3up, inputs=zip_text, outputs=s3up_text)
def check_admin_pass(x):
return gr.update(visible=x == admin_pass)
def close_admin(x):
return gr.update(visible=not (x == admin_pass))
admin_btn.click(check_admin_pass, inputs=admin_pass_textbox, outputs=system_row) \
.then(close_admin, inputs=admin_pass_textbox, outputs=admin_row)
# Get inputs to evaluate()
inputs_list = get_inputs_list(locals(), kwargs['model_lower'])
from functools import partial
all_kwargs = kwargs.copy()
all_kwargs.update(locals())
kwargs_evaluate = {k: v for k, v in all_kwargs.items() if k in inputs_kwargs_list}
fun = partial(evaluate,
**kwargs_evaluate)
fun2 = partial(evaluate,
model_state2,
**kwargs_evaluate)
dark_mode_btn = gr.Button("Dark Mode", variant="primary").style(
size="sm",
)
dark_mode_btn.click(
None,
None,
None,
_js="""() => {
if (document.querySelectorAll('.dark').length) {
document.querySelectorAll('.dark').forEach(el => el.classList.remove('dark'));
} else {
document.querySelector('body').classList.add('dark');
}
}""",
api_name="dark",
)
# Control chat and non-chat blocks, which can be independently used by chat checkbox swap
def col_nochat_fun(x):
return gr.Column.update(visible=not x)
def col_chat_fun(x):
return gr.Column.update(visible=x)
def context_fun(x):
return gr.Textbox.update(visible=not x)
chat.select(col_nochat_fun, chat, col_nochat, api_name="chat_checkbox") \
.then(col_chat_fun, chat, col_chat) \
.then(context_fun, chat, context)
# examples after submit or any other buttons for chat or no chat
if kwargs['examples'] is not None and kwargs['show_examples']:
gr.Examples(examples=kwargs['examples'], inputs=inputs_list)
# Score
def score_last_response(*args, nochat=False, model2=False):
""" Similar to user() """
args_list = list(args)
max_length_tokenize = 512 if is_low_mem else 2048
cutoff_len = max_length_tokenize * 4 # restrict deberta related to max for LLM
if not nochat:
history = args_list[-1]
if history is None:
if not model2:
# maybe only doing first model, no need to complain
print("Bad history in scoring last response, fix for now", flush=True)
history = []
if smodel is not None and \
stokenizer is not None and \
sdevice is not None and \
history is not None and len(history) > 0 and \
history[-1] is not None and \
len(history[-1]) >= 2:
os.environ['TOKENIZERS_PARALLELISM'] = 'false'
question = history[-1][0]
answer = history[-1][1]
else:
return 'Response Score: NA'
else:
answer = args_list[-1]
instruction_nochat_arg_id = eval_func_param_names.index('instruction_nochat')
question = args_list[instruction_nochat_arg_id]
if question is None:
return 'Response Score: Bad Question'
if answer is None:
return 'Response Score: Bad Answer'
question = question[-cutoff_len:]
answer = answer[-cutoff_len:]
inputs = stokenizer(question, answer,
return_tensors="pt",
truncation=True,
max_length=max_length_tokenize).to(smodel.device)
try:
score = torch.sigmoid(smodel(**inputs).logits[0]).cpu().detach().numpy()[0]
except torch.cuda.OutOfMemoryError as e:
print("GPU OOM: question: %s answer: %s exception: %s" % (question, answer, str(e)), flush=True)
del inputs
traceback.print_exc()
clear_torch_cache()
return 'Response Score: GPU OOM'
except (Exception, RuntimeError) as e:
if 'Expected all tensors to be on the same device' in str(e) or \
'expected scalar type Half but found Float' in str(e) or \
'probability tensor contains either' in str(e) or \
'cublasLt ran into an error!' in str(e):
print("GPU Error: question: %s answer: %s exception: %s" % (question, answer, str(e)),
flush=True)
traceback.print_exc()
clear_torch_cache()
return 'Response Score: GPU Error'
else:
raise
os.environ['TOKENIZERS_PARALLELISM'] = 'true'
return 'Response Score: {:.1%}'.format(score)
if kwargs['score_model']:
score_args = dict(fn=score_last_response,
inputs=inputs_list + [text_output],
outputs=[score_text],
)
score_args2 = dict(fn=partial(score_last_response, model2=True),
inputs=inputs_list + [text_output2],
outputs=[score_text2],
)
score_args_nochat = dict(fn=partial(score_last_response, nochat=True),
inputs=inputs_list + [text_output_nochat],
outputs=[score_text_nochat],
)
if not kwargs['auto_score']:
score_event = score_btn.click(**score_args, queue=stream_output, api_name='score') \
.then(**score_args2, queue=stream_output, api_name='score2')
score_event_nochat = score_btn_nochat.click(**score_args_nochat, queue=stream_output,
api_name='score_nochat')
def user(*args, undo=False, sanitize_user_prompt=True, model2=False):
"""
User that fills history for bot
:param args:
:param undo:
:param sanitize_user_prompt:
:param model2:
:return:
"""
args_list = list(args)
user_message = args_list[0]
input1 = args_list[1]
context1 = args_list[2]
if input1 and not user_message.endswith(':'):
user_message1 = user_message + ":" + input1
elif input1:
user_message1 = user_message + input1
else:
user_message1 = user_message
if sanitize_user_prompt:
from better_profanity import profanity
user_message1 = profanity.censor(user_message1)
history = args_list[-1]
if undo and history:
history.pop()
args_list = args_list[:-1] # FYI, even if unused currently
if history is None:
if not model2:
# no need to complain so often unless model1
print("Bad history, fix for now", flush=True)
history = []
# ensure elements not mixed across models as output,
# even if input is currently same source
history = history.copy()
if undo:
return history
else:
# FIXME: compare, same history for now
return history + [[user_message1, None]]
def bot(*args, retry=False):
"""
bot that consumes history for user input
instruction (from input_list) itself is not consumed by bot
:param args:
:param retry:
:return:
"""
args_list = list(args).copy()
history = args_list[-1] # model_state is -2
if retry and history:
history.pop()
if not history:
print("No history", flush=True)
return
# ensure output will be unique to models
history = history.copy()
instruction1 = history[-1][0]
context1 = ''
if kwargs['chat_history'] > 0:
prompt_type_arg_id = eval_func_param_names.index('prompt_type')
prompt_type1 = args_list[prompt_type_arg_id]
chat_arg_id = eval_func_param_names.index('chat')
chat1 = args_list[chat_arg_id]
context1 = ''
for histi in range(len(history) - 1):
data_point = dict(instruction=history[histi][0], input='', output=history[histi][1])
context1 += generate_prompt(data_point, prompt_type1, chat1, reduced=True)[0].replace(
'<br>', '\n')
if not context1.endswith('\n'):
context1 += '\n'
if context1 and not context1.endswith('\n'):
context1 += '\n' # ensure if terminates abruptly, then human continues on next line
args_list[0] = instruction1 # override original instruction with history from user
# only include desired chat history
args_list[2] = context1[-kwargs['chat_history']:]
model_state1 = args_list[-2]
if model_state1[0] is None or model_state1[0] == no_model_str:
return
args_list = args_list[:-2]
fun1 = partial(evaluate,
model_state1,
**kwargs_evaluate)
try:
for output in fun1(*tuple(args_list)):
bot_message = output
history[-1][1] = bot_message
yield history
except StopIteration:
yield history
except RuntimeError as e:
if "generator raised StopIteration" in str(e):
# assume last entry was bad, undo
history.pop()
yield history
raise
except Exception as e:
# put error into user input
history[-1][0] = "Exception: %s" % str(e)
yield history
raise
return
# NORMAL MODEL
user_args = dict(fn=functools.partial(user, sanitize_user_prompt=kwargs['sanitize_user_prompt']),
inputs=inputs_list + [text_output],
outputs=text_output,
)
bot_args = dict(fn=bot,
inputs=inputs_list + [model_state] + [text_output],
outputs=text_output,
)
retry_bot_args = dict(fn=functools.partial(bot, retry=True),
inputs=inputs_list + [model_state] + [text_output],
outputs=text_output,
)
undo_user_args = dict(fn=functools.partial(user, undo=True),
inputs=inputs_list + [text_output],
outputs=text_output,
)
# MODEL2
user_args2 = dict(fn=functools.partial(user, sanitize_user_prompt=kwargs['sanitize_user_prompt'], model2=True),
inputs=inputs_list + [text_output2],
outputs=text_output2,
)
bot_args2 = dict(fn=bot,
inputs=inputs_list + [model_state2] + [text_output2],
outputs=text_output2,
)
retry_bot_args2 = dict(fn=functools.partial(bot, retry=True),
inputs=inputs_list + [model_state2] + [text_output2],
outputs=text_output2,
)
undo_user_args2 = dict(fn=functools.partial(user, undo=True),
inputs=inputs_list + [text_output2],
outputs=text_output2,
)
def clear_instruct():
return gr.Textbox.update(value='')
if kwargs['auto_score']:
# in case 2nd model, consume instruction first, so can clear quickly
# bot doesn't consume instruction itself, just history from user, so why works
submit_event = instruction.submit(**user_args, queue=stream_output, api_name='instruction') \
.then(**user_args2, queue=stream_output, api_name='instruction2') \
.then(clear_instruct, None, instruction) \
.then(**bot_args, api_name='instruction_bot') \
.then(**score_args, api_name='instruction_bot_score') \
.then(**bot_args2, api_name='instruction_bot2') \
.then(**score_args2, api_name='instruction_bot_score2') \
.then(clear_torch_cache)
submit_event2 = submit.click(**user_args, queue=stream_output, api_name='submit') \
.then(**user_args2, queue=stream_output, api_name='submit2') \
.then(**bot_args, api_name='submit_bot') \
.then(clear_instruct, None, instruction) \
.then(**score_args, api_name='submit_bot_score') \
.then(**bot_args2, api_name='submit_bot2') \
.then(**score_args2, api_name='submit_bot_score2') \
.then(clear_torch_cache)
submit_event3 = retry.click(**user_args, queue=stream_output, api_name='retry') \
.then(**user_args2, queue=stream_output, api_name='retry2') \
.then(clear_instruct, None, instruction) \
.then(**retry_bot_args, api_name='retry_bot') \
.then(**score_args, api_name='retry_bot_score') \
.then(**retry_bot_args2, api_name='retry_bot2') \
.then(**score_args2, api_name='retry_bot_score2') \
.then(clear_torch_cache)
submit_event4 = undo.click(**undo_user_args, queue=stream_output, api_name='undo') \
.then(**score_args, api_name='undo_score') \
.then(**undo_user_args2, queue=stream_output, api_name='undo2') \
.then(**score_args2, api_name='undo_score2') \
.then(clear_instruct, None, instruction)
else:
submit_event = instruction.submit(**user_args, queue=stream_output, api_name='instruction') \
.then(**user_args2, queue=stream_output, api_name='instruction2') \
.then(clear_instruct, None, instruction) \
.then(**bot_args, api_name='instruction_bot') \
.then(**bot_args2, api_name='instruction_bot2') \
.then(clear_torch_cache)
submit_event2 = submit.click(**user_args, queue=stream_output, api_name='submit') \
.then(**user_args2, queue=stream_output, api_name='submit2') \
.then(clear_instruct, None, instruction) \
.then(**bot_args, api_name='submit_bot') \
.then(**bot_args2, api_name='submit_bot2') \
.then(clear_torch_cache)
submit_event3 = retry.click(**user_args, queue=stream_output, api_name='retry') \
.then(**user_args2, queue=stream_output, api_name='retry2') \
.then(clear_instruct, None, instruction) \
.then(**retry_bot_args, api_name='retry_bot') \
.then(**retry_bot_args2, api_name='retry_bot2') \
.then(clear_torch_cache)
submit_event4 = undo.click(**undo_user_args, queue=stream_output, api_name='undo') \
.then(**undo_user_args2, queue=stream_output, api_name='undo2')
# does both models
clear.click(lambda: None, None, text_output, queue=False, api_name='clear') \
.then(lambda: None, None, text_output2, queue=False, api_name='clear2')
# FIXME: compare
submit_event_nochat = submit_nochat.click(fun, inputs=[model_state] + inputs_list,
outputs=text_output_nochat, api_name='submit_nochat') \
.then(**score_args_nochat, api_name='instruction_bot_score_nochat') \
.then(clear_torch_cache)
def load_model(model_name, lora_weights, model_state_old, prompt_type_old, load_8bit, infer_devices, gpu_id):
# ensure old model removed from GPU memory
if kwargs['debug']:
print("Pre-switch pre-del GPU memory: %s" % torch.cuda.memory_allocated(), flush=True)
if isinstance(model_state_old[0], str) and model0 is not None:
# best can do, move model loaded at first to CPU
model0.cpu()
if model_state_old[0] is not None and not isinstance(model_state_old[0], str):
try:
model_state_old[0].cpu()
except Exception as e:
# sometimes hit NotImplementedError: Cannot copy out of meta tensor; no data!
print("Unable to put model on CPU: %s" % str(e), flush=True)
del model_state_old[0]
model_state_old[0] = None
if model_state_old[1] is not None and not isinstance(model_state_old[1], str):
del model_state_old[1]
model_state_old[1] = None
clear_torch_cache()
if kwargs['debug']:
print("Pre-switch post-del GPU memory: %s" % torch.cuda.memory_allocated(), flush=True)
if model_name is None or model_name == no_model_str:
# no-op if no model, just free memory
# no detranscribe needed for model, never go into evaluate
lora_weights = no_lora_str
return [None, None, None, model_name], model_name, lora_weights, prompt_type_old
all_kwargs1 = all_kwargs.copy()
all_kwargs1['base_model'] = model_name.strip()
all_kwargs1['load_8bit'] = load_8bit
all_kwargs1['infer_devices'] = infer_devices
all_kwargs1['gpu_id'] = int(gpu_id) # detranscribe
model_lower = model_name.strip().lower()
if model_lower in inv_prompt_type_to_model_lower:
prompt_type1 = inv_prompt_type_to_model_lower[model_lower]
else:
prompt_type1 = prompt_type_old
# detranscribe
if lora_weights == no_lora_str:
lora_weights = ''
all_kwargs1['lora_weights'] = lora_weights.strip()
model1, tokenizer1, device1 = get_model(**all_kwargs1)
clear_torch_cache()
if kwargs['debug']:
print("Post-switch GPU memory: %s" % torch.cuda.memory_allocated(), flush=True)
return [model1, tokenizer1, device1, model_name], model_name, lora_weights, prompt_type1
def dropdown_prompt_type_list(x):
return gr.Dropdown.update(value=x)
def chatbot_list(x, model_used_in):
return gr.Textbox.update(label=f'h2oGPT [Model: {model_used_in}]')
load_model_args = dict(fn=load_model,
inputs=[model_choice, lora_choice, model_state, prompt_type,
model_load8bit_checkbox, model_infer_devices_checkbox, model_gpu],
outputs=[model_state, model_used, lora_used, prompt_type])
prompt_update_args = dict(fn=dropdown_prompt_type_list, inputs=prompt_type, outputs=prompt_type)
chatbot_update_args = dict(fn=chatbot_list, inputs=[text_output, model_used], outputs=text_output)
nochat_update_args = dict(fn=chatbot_list, inputs=[text_output, model_used], outputs=text_output_nochat)
if not is_public:
load_model_event = load_model_button.click(**load_model_args) \
.then(**prompt_update_args) \
.then(**chatbot_update_args) \
.then(**nochat_update_args) \
.then(clear_torch_cache)
load_model_args2 = dict(fn=load_model,
inputs=[model_choice2, lora_choice2, model_state2, prompt_type2,
model_load8bit_checkbox2, model_infer_devices_checkbox2, model_gpu2],
outputs=[model_state2, model_used2, lora_used2, prompt_type2])
prompt_update_args2 = dict(fn=dropdown_prompt_type_list, inputs=prompt_type2, outputs=prompt_type2)
chatbot_update_args2 = dict(fn=chatbot_list, inputs=[text_output2, model_used2], outputs=text_output2)
if not is_public:
load_model_event2 = load_model_button2.click(**load_model_args2) \
.then(**prompt_update_args2) \
.then(**chatbot_update_args2) \
.then(clear_torch_cache)
def dropdown_model_list(list0, x):
new_state = [list0[0] + [x]]
new_options = [*new_state[0]]
return gr.Dropdown.update(value=x, choices=new_options), \
gr.Dropdown.update(value=x, choices=new_options), \
'', new_state
add_model_event = add_model_button.click(fn=dropdown_model_list,
inputs=[model_options_state, new_model],
outputs=[model_choice, model_choice2, new_model, model_options_state])
def dropdown_lora_list(list0, x, model_used1, lora_used1, model_used2, lora_used2):
new_state = [list0[0] + [x]]
new_options = [*new_state[0]]
# don't switch drop-down to added lora if already have model loaded
x1 = x if model_used1 == no_model_str else lora_used1
x2 = x if model_used2 == no_model_str else lora_used2
return gr.Dropdown.update(value=x1, choices=new_options), \
gr.Dropdown.update(value=x2, choices=new_options), \
'', new_state
add_lora_event = add_lora_button.click(fn=dropdown_lora_list,
inputs=[lora_options_state, new_lora, model_used, lora_used, model_used2, lora_used2],
outputs=[lora_choice, lora_choice2, new_lora, lora_options_state])
go_btn.click(lambda: gr.update(visible=False), None, go_btn, api_name="go") \
.then(lambda: gr.update(visible=True), None, normal_block) \
.then(**load_model_args).then(**prompt_update_args)
def compare_textbox_fun(x):
return gr.Textbox.update(visible=x)
def compare_column_fun(x):
return gr.Column.update(visible=x)
def compare_prompt_fun(x):
return gr.Dropdown.update(visible=x)
compare_checkbox.select(compare_textbox_fun, compare_checkbox, text_output2, api_name="compare_checkbox") \
.then(compare_column_fun, compare_checkbox, col_model2) \
.then(compare_prompt_fun, compare_checkbox, prompt_type2) \
.then(compare_textbox_fun, compare_checkbox, score_text2)
# FIXME: add score_res2 in condition, but do better
# callback for logging flagged input/output
callback.setup(inputs_list + [text_output], "flagged_data_points")
flag_btn.click(lambda *args: callback.flag(args), inputs_list + [text_output], None, preprocess=False,
api_name='flag')
flag_btn_nochat.click(lambda *args: callback.flag(args), inputs_list + [text_output], None, preprocess=False,
api_name='flag_nochat')
def get_system_info():
return gr.Textbox.update(value=system_info_print())
system_event = system_btn.click(get_system_info, outputs=system_text, api_name='system_info')
# don't pass text_output, don't want to clear output, just stop it
# FIXME: have to click once to stop output and second time to stop GPUs going
stop_btn.click(lambda: None, None, None,
cancels=[submit_event_nochat, submit_event, submit_event2, submit_event3],
queue=False, api_name='stop').then(clear_torch_cache)
demo.queue(concurrency_count=1)
favicon_path = "h2o-logo.svg"
demo.launch(share=kwargs['share'], server_name="0.0.0.0", show_error=True,
favicon_path=favicon_path, prevent_thread_lock=True) # , enable_queue=True)
print("Started GUI", flush=True)
demo.block_thread()
input_args_list = ['model_state']
inputs_kwargs_list = ['debug', 'save_dir', 'hard_stop_list', 'sanitize_bot_response', 'model_state0']
def get_inputs_list(inputs_dict, model_lower):
"""
map gradio objects in locals() to inputs for evaluate().
:param inputs_dict:
:param model_lower:
:return:
"""
inputs_list_names = list(inspect.signature(evaluate).parameters)
inputs_list = []
for k in inputs_list_names:
if k == 'kwargs':
continue
if k in input_args_list + inputs_kwargs_list:
# these are added via partial, not taken as input
continue
if 'mbart-' not in model_lower and k in ['src_lang', 'tgt_lang']:
continue
inputs_list.append(inputs_dict[k])
return inputs_list
eval_func_param_names = ['instruction',
'iinput',
'context',
'stream_output',
'prompt_type',
'temperature',
'top_p',
'top_k',
'num_beams',
'max_new_tokens',
'min_new_tokens',
'early_stopping',
'max_time',
'repetition_penalty',
'num_return_sequences',
'do_sample',
'chat',
'instruction_nochat',
'iinput_nochat',
]
def evaluate(
model_state,
# START NOTE: Examples must have same order of parameters
instruction,
iinput,
context,
stream_output,
prompt_type,
temperature,
top_p,
top_k,
num_beams,
max_new_tokens,
min_new_tokens,
early_stopping,
max_time,
repetition_penalty,
num_return_sequences,
do_sample,
chat,
instruction_nochat,
iinput_nochat,
# END NOTE: Examples must have same order of parameters
src_lang=None,
tgt_lang=None,
debug=False,
save_dir=None,
hard_stop_list=None,
sanitize_bot_response=True,
model_state0=None,
**kwargs,
):
if debug:
locals_dict = locals().copy()
locals_dict.pop('model_state', None)
locals_dict.pop('model_state0', None)
print(locals_dict)
no_model_msg = "Please choose a base model with --base_model (CLI) or in Models Tab (gradio).\nThen start New Conversation"
if model_state0 is None:
# e.g. for no gradio case, set dummy value, else should be set
model_state0 = [None, None, None, None]
if model_state is not None and len(model_state) == 4 and not isinstance(model_state[0], str):
# try to free-up original model (i.e. list was passed as reference)
if model_state0 is not None and model_state0[0] is not None:
model_state0[0].cpu()
model_state0[0] = None
# try to free-up original tokenizer (i.e. list was passed as reference)
if model_state0 is not None and model_state0[1] is not None:
model_state0[1] = None
clear_torch_cache()
model, tokenizer, device, base_model = model_state
elif model_state0 is not None and len(model_state0) == 4 and model_state0[0] is not None:
assert isinstance(model_state[0], str)
model, tokenizer, device, base_model = model_state0
else:
raise AssertionError(no_model_msg)
if base_model is None:
raise AssertionError(no_model_msg)
assert base_model.strip(), no_model_msg
assert model, "Model is missing"
assert tokenizer, "Tokenizer is missing"
# choose chat or non-chat mode
if not chat:
instruction = instruction_nochat
iinput = iinput_nochat
data_point = dict(context=context, instruction=instruction, input=iinput)
prompter = Prompter(prompt_type, debug=debug, chat=chat, stream_output=stream_output)
prompt = prompter.generate_prompt(data_point)
if hard_stop_list is None:
# acts like undo on user entry and bot response
hard_stop_list = []
if isinstance(tokenizer, str):
# pipeline
if tokenizer == "summarization":
key = 'summary_text'
else:
raise RuntimeError("No such task type %s" % tokenizer)
# NOTE: uses max_length only
yield model(prompt, max_length=max_new_tokens)[0][key]
if 'mbart-' in base_model.lower():
assert src_lang is not None
tokenizer.src_lang = languages_covered()[src_lang]
if chat:
# override, ignore user change
num_return_sequences = 1
if prompt_type in ['human_bot', 'instruct_vicuna', 'instruct_with_end']:
if prompt_type == 'human_bot':
# encounters = [prompt.count(human) + 1, prompt.count(bot) + 1]
# stopping only starts once output is beyond prompt
# 1 human is enough to trigger, but need 2 bots, because very first view back will be bot we added
stop_words = [human, bot, '\n' + human, '\n' + bot]
encounters = [1, 2]
elif prompt_type == 'instruct_vicuna':
# even below is not enough, generic strings and many ways to encode
stop_words = [
'### Human:',
"""
### Human:""",
"""
### Human:
""",
'### Assistant:',
"""
### Assistant:""",
"""
### Assistant:
""",
]
encounters = [1, 2]
else:
# some instruct prompts have this as end, doesn't hurt to stop on it since not common otherwise
stop_words = ['### End']
encounters = [1]
stop_words_ids = [
tokenizer(stop_word, return_tensors='pt')['input_ids'].squeeze() for stop_word in stop_words]
# handle single token case
stop_words_ids = [x if len(x.shape) > 0 else torch.tensor([x]) for x in stop_words_ids]
stop_words_ids = [x for x in stop_words_ids if x.shape[0] > 0]
# avoid padding in front of tokens
if tokenizer.pad_token:
stop_words_ids = [x[1:] if x[0] == tokenizer.pad_token_id and len(x) > 1 else x for x in stop_words_ids]
# handle fake \n added
stop_words_ids = [x[1:] if y[0] == '\n' else x for x, y in zip(stop_words_ids, stop_words)]
# build stopper
stopping_criteria = StoppingCriteriaList([StoppingCriteriaSub(stops=stop_words_ids, encounters=encounters)])
else:
stopping_criteria = StoppingCriteriaList()
# help to avoid errors like:
# RuntimeError: The size of tensor a (2048) must match the size of tensor b (2049) at non-singleton dimension 3
# RuntimeError: expected scalar type Half but found Float
# with - 256
max_length_tokenize = 768 - 256 if is_low_mem else 2048 - 256
cutoff_len = max_length_tokenize * 4 # if reaches limit, then can't generate new tokens
output_smallest = 30 * 4
prompt = prompt[-cutoff_len - output_smallest:]
inputs = tokenizer(prompt,
return_tensors="pt",
truncation=True,
max_length=max_length_tokenize)
if debug and len(inputs["input_ids"]) > 0:
print('input_ids length', len(inputs["input_ids"][0]), flush=True)
input_ids = inputs["input_ids"].to(device)
generation_config = GenerationConfig(
temperature=float(temperature),
top_p=float(top_p),
top_k=top_k,
num_beams=num_beams,
do_sample=do_sample,
repetition_penalty=float(repetition_penalty),
num_return_sequences=num_return_sequences,
renormalize_logits=True,
remove_invalid_values=True,
**kwargs,
)
gen_kwargs = dict(input_ids=input_ids,
generation_config=generation_config,
return_dict_in_generate=True,
output_scores=True,
max_new_tokens=max_new_tokens, # prompt + new
min_new_tokens=min_new_tokens, # prompt + new
early_stopping=early_stopping, # False, True, "never"
max_time=max_time,
stopping_criteria=stopping_criteria,
)
if 'gpt2' in base_model.lower():
gen_kwargs.update(dict(bos_token_id=tokenizer.bos_token_id, pad_token_id=tokenizer.eos_token_id))
elif 'mbart-' in base_model.lower():
assert tgt_lang is not None
tgt_lang = languages_covered()[tgt_lang]
gen_kwargs.update(dict(forced_bos_token_id=tokenizer.lang_code_to_id[tgt_lang]))
else:
gen_kwargs.update(dict(pad_token_id=tokenizer.eos_token_id))
decoder = functools.partial(tokenizer.decode,
skip_special_tokens=True,
clean_up_tokenization_spaces=True,
)
decoder_raw = functools.partial(tokenizer.decode,
skip_special_tokens=False,
clean_up_tokenization_spaces=True,
)
with torch.no_grad():
# decoded tokenized prompt can deviate from prompt due to special characters
inputs_decoded = decoder(input_ids[0])
inputs_decoded_raw = decoder_raw(input_ids[0])
if inputs_decoded == prompt:
# normal
pass
elif inputs_decoded.lstrip() == prompt.lstrip():
# sometimes extra space in front, make prompt same for prompt removal
prompt = inputs_decoded
elif inputs_decoded_raw == prompt:
# some models specify special tokens that are part of normal prompt, so can't skip them
inputs_decoded_raw = inputs_decoded
decoder = decoder_raw
else:
print("WARNING: Special characters in prompt", flush=True)
if stream_output:
def generate(callback=None, **kwargs):
# re-order stopping so Stream first and get out all chunks before stop for other reasons
stopping_criteria0 = kwargs.get('stopping_criteria', StoppingCriteriaList()).copy()
kwargs['stopping_criteria'] = StoppingCriteriaList()
kwargs['stopping_criteria'].append(Stream(func=callback))
for stopping_criteria1 in stopping_criteria0:
kwargs['stopping_criteria'].append(stopping_criteria1)
try:
model.generate(**kwargs)
except torch.cuda.OutOfMemoryError as e:
print("GPU OOM: prompt: %s inputs_decoded: %s exception: %s" % (prompt, inputs_decoded, str(e)),
flush=True)
if kwargs['input_ids'] is not None:
kwargs['input_ids'].cpu()
kwargs['input_ids'] = None
traceback.print_exc()
clear_torch_cache()
return
except (Exception, RuntimeError) as e:
if 'Expected all tensors to be on the same device' in str(e) or \
'expected scalar type Half but found Float' in str(e) or \
'probability tensor contains either' in str(e) or \
'cublasLt ran into an error!' in str(e):
print(
"GPU Error: prompt: %s inputs_decoded: %s exception: %s" % (prompt, inputs_decoded, str(e)),
flush=True)
traceback.print_exc()
clear_torch_cache()
if raise_generate_gpu_exceptions:
raise
return
else:
raise
decoded_output = None
for output in CallbackToGenerator(generate, callback=None, **gen_kwargs):
decoded_output = decoder(output)
if output[-1] in [tokenizer.eos_token_id]:
if debug:
print("HIT EOS", flush=True)
break
if any(ele in decoded_output for ele in hard_stop_list):
raise StopIteration
yield prompter.get_response(decoded_output, prompt=inputs_decoded,
sanitize_bot_response=sanitize_bot_response)
if save_dir and decoded_output:
save_generate_output(output=decoded_output, base_model=base_model, save_dir=save_dir)
else:
outputs = model.generate(**gen_kwargs)
outputs = [decoder(s) for s in outputs.sequences]
yield prompter.get_response(outputs, prompt=inputs_decoded,
sanitize_bot_response=sanitize_bot_response)
if save_dir and outputs and len(outputs) >= 1:
decoded_output = prompt + outputs[0]
save_generate_output(output=decoded_output, base_model=base_model, save_dir=save_dir)
def get_generate_params(model_lower, chat,
stream_output, show_examples,
prompt_type, temperature, top_p, top_k, num_beams,
max_new_tokens, min_new_tokens, early_stopping, max_time,
repetition_penalty, num_return_sequences,
do_sample):
use_defaults = False
use_default_examples = True
examples = []
task_info = f"{prompt_type}"
if model_lower:
print(f"Using Model {model_lower}", flush=True)
else:
print("No model defined yet", flush=True)
min_new_tokens = min_new_tokens if min_new_tokens is not None else 0
early_stopping = early_stopping if early_stopping is not None else False
max_time_defaults = 60 * 3
max_time = max_time if max_time is not None else max_time_defaults
if not prompt_type and model_lower in inv_prompt_type_to_model_lower:
prompt_type = inv_prompt_type_to_model_lower[model_lower]
# examples at first don't include chat, instruction_nochat, iinput_nochat, added at end
if show_examples is None:
if chat:
show_examples = False
else:
show_examples = True
summarize_example1 = """Jeff: Can I train a ? Transformers model on Amazon SageMaker?
Philipp: Sure you can use the new Hugging Face Deep Learning Container.
Jeff: ok.
Jeff: and how can I get started?
Jeff: where can I find documentation?
Philipp: ok, ok you can find everything here. https://huggingface.co/blog/the-partnership-amazon-sagemaker-and-hugging-face"""
if 'bart-large-cnn-samsum' in model_lower or 'flan-t5-base-samsum' in model_lower:
placeholder_instruction = summarize_example1
placeholder_input = ""
use_defaults = True
use_default_examples = False
examples += [
[placeholder_instruction, "", "", stream_output, 'plain', 1.0, 1.0, 50, 1, 128, 0, False, max_time_defaults,
1.0, 1,
False]]
task_info = "Summarization"
elif 't5-' in model_lower or 't5' == model_lower or 'flan-' in model_lower:
placeholder_instruction = "The square root of x is the cube root of y. What is y to the power of 2, if x = 4?"
placeholder_input = ""
use_defaults = True
use_default_examples = True
task_info = "Multi-Task: Q/A, translation, Chain-of-Thought, Logical Reasoning, Summarization, etc. Best to use task prefix as trained on, e.g. `translate English to German: ` (space after colon)"
elif 'mbart-' in model_lower:
placeholder_instruction = "The girl has long hair."
placeholder_input = ""
use_defaults = True
use_default_examples = False
examples += [
[placeholder_instruction, "", "", stream_output, 'plain', 1.0, 1.0, 50, 1, 128, 0, False, max_time_defaults,
1.0, 1,
False]]
elif 'gpt2' in model_lower:
placeholder_instruction = "The sky is"
placeholder_input = ""
prompt_type = prompt_type or 'plain'
use_default_examples = True # some will be odd "continuations" but can be ok
examples += [
[placeholder_instruction, "", "", stream_output, 'plain', 1.0, 1.0, 50, 1, 128, 0, False, max_time_defaults,
1.0, 1,
False]]
task_info = "Auto-complete phrase, code, etc."
use_defaults = True
else:
if chat:
placeholder_instruction = "Enter a question or imperative."
else:
placeholder_instruction = "Give detailed answer for whether Einstein or Newton is smarter."
placeholder_input = ""
if model_lower:
prompt_type = prompt_type or 'human_bot'
else:
prompt_type = ''
examples += [[summarize_example1, 'Summarize' if prompt_type not in ['plain', 'instruct_simple'] else '', "",
stream_output, prompt_type or 'plain', 0.1, 0.75, 40, 4, 256, 0, False, max_time_defaults, 1.0, 1,
False]]
task_info = "No task"
if prompt_type == 'instruct':
task_info = "Answer question or follow imperative as instruction with optionally input."
elif prompt_type == 'plain':
task_info = "Auto-complete phrase, code, etc."
elif prompt_type == 'human_bot':
if chat:
task_info = "Chat (Shift-Enter to give question/imperative, input concatenated with instruction)"
else:
task_info = "Ask question/imperative (input concatenated with instruction)"
# revert to plain if still nothing
prompt_type = prompt_type or 'plain'
if use_defaults:
temperature = 1.0 if temperature is None else temperature
top_p = 1.0 if top_p is None else top_p
top_k = 40 if top_k is None else top_k
num_beams = num_beams or 1
max_new_tokens = max_new_tokens or 128
repetition_penalty = repetition_penalty or 1.07
num_return_sequences = min(num_beams, num_return_sequences or 1)
do_sample = False if do_sample is None else do_sample
else:
temperature = 0.1 if temperature is None else temperature
top_p = 0.75 if top_p is None else top_p
top_k = 40 if top_k is None else top_k
if chat:
num_beams = num_beams or 1
else:
num_beams = num_beams or 4
max_new_tokens = max_new_tokens or 256
repetition_penalty = repetition_penalty or 1.07
num_return_sequences = min(num_beams, num_return_sequences or 1)
do_sample = False if do_sample is None else do_sample
# doesn't include chat, instruction_nochat, iinput_nochat, added later
params_list = ["", stream_output, prompt_type, temperature, top_p, top_k, num_beams, max_new_tokens, min_new_tokens,
early_stopping, max_time, repetition_penalty, num_return_sequences, do_sample]
if use_default_examples:
examples += [
["Translate English to French", "Good morning"] + params_list,
["Give detailed answer for whether Einstein or Newton is smarter.", ''] + params_list,
["Explain in detailed list, all the best practices for coding in python.", ''] + params_list,
[
"Create a markdown table with 3 rows for the primary colors, and 2 columns, with color name and hex codes.",
''] + params_list,
['Translate to German: My name is Arthur', ''] + params_list,
["Please answer to the following question. Who is going to be the next Ballon d'or?", ''] + params_list,
['Can Geoffrey Hinton have a conversation with George Washington? Give the rationale before answering.',
''] + params_list,
['Please answer the following question. What is the boiling point of Nitrogen?', ''] + params_list,
['Answer the following yes/no question. Can you write a whole Haiku in a single tweet?', ''] + params_list,
["Simplify the following expression: (False or False and True). Explain your answer.", ''] + params_list,
[
"Premise: At my age you will probably have learnt one lesson. Hypothesis: It's not certain how many lessons you'll learn by your thirties. Does the premise entail the hypothesis?",
''] + params_list,
['The square root of x is the cube root of y. What is y to the power of 2, if x = 4?', ''] + params_list,
[
'Answer the following question by reasoning step by step. The cafeteria had 23 apples. If they used 20 for lunch, and bought 6 more, how many apple do they have?',
''] + params_list,
["""def area_of_rectangle(a: float, b: float):
\"\"\"Return the area of the rectangle.\"\"\"""", ''] + params_list,
["""# a function in native python:
def mean(a):
return sum(a)/len(a)
# the same function using numpy:
import numpy as np
def mean(a):""", ''] + params_list,
["""X = np.random.randn(100, 100)
y = np.random.randint(0, 1, 100)
# fit random forest classifier with 20 estimators""", ''] + params_list,
]
src_lang = "English"
tgt_lang = "Russian"
# move to correct position
for example in examples:
example += [chat, '', '']
# adjust examples if non-chat mode
if not chat:
example[eval_func_param_names.index('instruction_nochat')] = example[
eval_func_param_names.index('instruction')]
example[eval_func_param_names.index('instruction')] = ''
example[eval_func_param_names.index('iinput_nochat')] = example[eval_func_param_names.index('iinput')]
example[eval_func_param_names.index('iinput')] = ''
return placeholder_instruction, placeholder_input, \
stream_output, show_examples, \
prompt_type, temperature, top_p, top_k, num_beams, \
max_new_tokens, min_new_tokens, early_stopping, max_time, \
repetition_penalty, num_return_sequences, \
do_sample, \
src_lang, tgt_lang, \
examples, \
task_info
def languages_covered():
# https://huggingface.co/facebook/mbart-large-50-many-to-many-mmt#languages-covered
covered = """Arabic (ar_AR), Czech (cs_CZ), German (de_DE), English (en_XX), Spanish (es_XX), Estonian (et_EE), Finnish (fi_FI), French (fr_XX), Gujarati (gu_IN), Hindi (hi_IN), Italian (it_IT), Japanese (ja_XX), Kazakh (kk_KZ), Korean (ko_KR), Lithuanian (lt_LT), Latvian (lv_LV), Burmese (my_MM), Nepali (ne_NP), Dutch (nl_XX), Romanian (ro_RO), Russian (ru_RU), Sinhala (si_LK), Turkish (tr_TR), Vietnamese (vi_VN), Chinese (zh_CN), Afrikaans (af_ZA), Azerbaijani (az_AZ), Bengali (bn_IN), Persian (fa_IR), Hebrew (he_IL), Croatian (hr_HR), Indonesian (id_ID), Georgian (ka_GE), Khmer (km_KH), Macedonian (mk_MK), Malayalam (ml_IN), Mongolian (mn_MN), Marathi (mr_IN), Polish (pl_PL), Pashto (ps_AF), Portuguese (pt_XX), Swedish (sv_SE), Swahili (sw_KE), Tamil (ta_IN), Telugu (te_IN), Thai (th_TH), Tagalog (tl_XX), Ukrainian (uk_UA), Urdu (ur_PK), Xhosa (xh_ZA), Galician (gl_ES), Slovene (sl_SI)"""
covered = covered.split(', ')
covered = {x.split(' ')[0]: x.split(' ')[1].replace(')', '').replace('(', '') for x in covered}
return covered
def test_test_prompt(prompt_type='instruct', data_point=0):
example_data_point = example_data_points[data_point]
example_data_point.pop('output', None)
return generate_prompt(example_data_point, prompt_type, False, False)
if __name__ == "__main__":
print("""
WORLD_SIZE=4 CUDA_VISIBLE_DEVICES="0,1,2,3" torchrun --nproc_per_node=4 --master_port=1234 generate.py --base_model='EleutherAI/gpt-j-6B' --lora_weights=lora-alpaca_6B
python generate.py --base_model='EleutherAI/gpt-j-6B' --lora_weights='lora-alpaca_6B'
python generate.py --base_model='EleutherAI/gpt-neox-20b' --lora_weights='lora-alpaca_20B'
# generate without lora weights, no prompt
python generate.py --base_model='EleutherAI/gpt-neox-20b' --prompt_type='plain'
python generate.py --base_model='togethercomputer/GPT-NeoXT-Chat-Base-20B' --prompt_type='dai_faq'
python generate.py --base_model='togethercomputer/GPT-NeoXT-Chat-Base-20B' --prompt_type='dai_faq' --lora_weights='lora_20B_daifaq'
# OpenChatKit settings:
python generate.py --base_model='togethercomputer/GPT-NeoXT-Chat-Base-20B' --prompt_type='human_bot --debug=True --num_beams=1 --temperature=0.6 --top_k=40 --top_p=1.0
python generate.py --base_model='distilgpt2' --prompt_type='plain' --debug=True --num_beams=1 --temperature=0.6 --top_k=40 --top_p=1.0 --share=False
python generate.py --base_model='t5-large' --prompt_type='simple_instruct'
python generate.py --base_model='philschmid/bart-large-cnn-samsum'
python generate.py --base_model='philschmid/flan-t5-base-samsum'
python generate.py --base_model='facebook/mbart-large-50-many-to-many-mmt'
python generate.py --base_model='togethercomputer/GPT-NeoXT-Chat-Base-20B' --prompt_type='human_bot' --lora_weights='GPT-NeoXT-Chat-Base-20B.merged.json.8_epochs.57b2892c53df5b8cefac45f84d019cace803ef26.28'
must have 4*48GB GPU and run without 8bit in order for sharding to work with infer_devices=False
can also pass --prompt_type='human_bot' and model can somewhat handle instructions without being instruct tuned
python generate.py --base_model=decapoda-research/llama-65b-hf --load_8bit=False --infer_devices=False --prompt_type='human_bot'
python generate.py --base_model=h2oai/h2ogpt-oig-oasst1-512-6.9b
""", flush=True)
fire.Fire(main)
|