File size: 5,228 Bytes
a0e2e84
efe0924
 
 
a0e2e84
5cf48e0
a0e2e84
 
 
 
efe0924
5cf48e0
efe0924
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5cf48e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a0e2e84
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
import contextlib
import os
import gc
import random
import shutil
import time
import traceback
import zipfile

import filelock
import numpy as np
import pandas as pd
import torch


def set_seed(seed: int):
    """
    Sets the seed of the entire notebook so results are the same every time we run.
    This is for REPRODUCIBILITY.
    """
    np.random.seed(seed)
    random_state = np.random.RandomState(seed)
    random.seed(seed)
    torch.manual_seed(seed)
    torch.cuda.manual_seed(seed)
    torch.backends.cudnn.deterministic = True
    torch.backends.cudnn.benchmark = False
    os.environ['PYTHONHASHSEED'] = str(seed)
    return random_state


def flatten_list(lis):
    """Given a list, possibly nested to any level, return it flattened."""
    new_lis = []
    for item in lis:
        if type(item) == type([]):
            new_lis.extend(flatten_list(item))
        else:
            new_lis.append(item)
    return new_lis


def clear_torch_cache():
    if torch.cuda.is_available:
        torch.cuda.empty_cache()
        torch.cuda.ipc_collect()
        gc.collect()


def system_info():
    import psutil

    system = {}
    # https://stackoverflow.com/questions/48951136/plot-multiple-graphs-in-one-plot-using-tensorboard
    # https://arshren.medium.com/monitoring-your-devices-in-python-5191d672f749
    temps = psutil.sensors_temperatures(fahrenheit=False)
    if 'coretemp' in temps:
        coretemp = temps['coretemp']
        temp_dict = {k.label: k.current for k in coretemp}
        for k, v in temp_dict.items():
            system['CPU_C/%s' % k] = v

    # https://github.com/gpuopenanalytics/pynvml/blob/master/help_query_gpu.txt
    from pynvml.smi import nvidia_smi
    nvsmi = nvidia_smi.getInstance()

    gpu_power_dict = {'W_gpu%d' % i: x['power_readings']['power_draw'] for i, x in
                      enumerate(nvsmi.DeviceQuery('power.draw')['gpu'])}
    for k, v in gpu_power_dict.items():
        system['GPU_W/%s' % k] = v

    gpu_temp_dict = {'C_gpu%d' % i: x['temperature']['gpu_temp'] for i, x in
                     enumerate(nvsmi.DeviceQuery('temperature.gpu')['gpu'])}
    for k, v in gpu_temp_dict.items():
        system['GPU_C/%s' % k] = v

    gpu_memory_free_dict = {'MiB_gpu%d' % i: x['fb_memory_usage']['free'] for i, x in
                            enumerate(nvsmi.DeviceQuery('memory.free')['gpu'])}
    gpu_memory_total_dict = {'MiB_gpu%d' % i: x['fb_memory_usage']['total'] for i, x in
                             enumerate(nvsmi.DeviceQuery('memory.total')['gpu'])}
    gpu_memory_frac_dict = {k: gpu_memory_free_dict[k] / gpu_memory_total_dict[k] for k in gpu_memory_total_dict}
    for k, v in gpu_memory_frac_dict.items():
        system[f'GPU_M/%s' % k] = v

    return system


def system_info_print():
    try:
        df = pd.DataFrame.from_dict(system_info(), orient='index')
        # avoid slamming GPUs
        time.sleep(1)
        return df.to_markdown()
    except Exception as e:
        return "Error: %s" % str(e)


def zip_data(root_dirs=None, zip_path='data.zip', base_dir='./'):
    try:
        return _zip_data(zip_path=zip_path, base_dir=base_dir, root_dirs=root_dirs)
    except Exception as e:
        traceback.print_exc()
        print('Exception in zipping: %s' % str(e))


def _zip_data(root_dirs=None, zip_path='data.zip', base_dir='./'):
    assert root_dirs is not None
    with zipfile.ZipFile(zip_path, "w") as expt_zip:
        for root_dir in root_dirs:
            if root_dir is None:
                continue
            for root, d, files in os.walk(root_dir):
                for file in files:
                    file_to_archive = os.path.join(root, file)
                    assert os.path.exists(file_to_archive)
                    path_to_archive = os.path.relpath(file_to_archive, base_dir)
                    expt_zip.write(filename=file_to_archive, arcname=path_to_archive)
    return "data.zip"


def save_generate_output(output=None, base_model=None, json_file_path=None):
    try:
        return _save_generate_output(output=output, base_model=base_model, json_file_path=json_file_path)
    except Exception as e:
        traceback.print_exc()
        print('Exception in saving: %s' % str(e))


def _save_generate_output(output=None, base_model=None, json_file_path=None):
    """
    Save conversation to .json, row by row
    Appends if file exists
    """
    assert isinstance(json_file_path, str), "must provide save_path"
    as_file = os.path.normpath(json_file_path)
    if os.path.isfile(as_file):
        # protection if had file there before
        os.remove(as_file)
    os.makedirs(json_file_path, exist_ok=True)
    json_file_file = os.path.join(json_file_path, 'save.json')
    import json
    if output[-10:] == '\n\n<human>:':
        # remove trailing <human>:
        output = output[:-10]
    with filelock.FileLock("save_path.lock"):
        # lock logging in case have concurrency
        with open(json_file_file, "a") as f:
            # just add [ at start, and ] at end, and have proper JSON dataset
            f.write(
                "  " + json.dumps(
                    dict(text=output, time=time.ctime(), base_model=base_model)
                ) + ",\n"
            )