Spaces:
Runtime error
Runtime error
File size: 42,979 Bytes
efe0924 65121b5 efe0924 65121b5 efe0924 65121b5 efe0924 65121b5 efe0924 a0e2e84 efe0924 6a0a9f7 65121b5 efe0924 8910711 2f10edd efe0924 65121b5 efe0924 65121b5 efe0924 65121b5 efe0924 65121b5 efe0924 65121b5 efe0924 65121b5 efe0924 65121b5 efe0924 65121b5 efe0924 65121b5 efe0924 65121b5 efe0924 65121b5 efe0924 65121b5 efe0924 65121b5 efe0924 65121b5 efe0924 65121b5 efe0924 65121b5 efe0924 65121b5 efe0924 65121b5 efe0924 65121b5 efe0924 65121b5 efe0924 65121b5 efe0924 65121b5 efe0924 65121b5 efe0924 65121b5 efe0924 65121b5 efe0924 65121b5 efe0924 65121b5 efe0924 65121b5 efe0924 65121b5 efe0924 65121b5 efe0924 65121b5 efe0924 65121b5 efe0924 65121b5 efe0924 8910711 efe0924 65121b5 efe0924 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 |
import os
import sys
import time
from functools import partial
from typing import List, Union
from enum import Enum
import fire
import numpy as np
from utils import get_githash, copy_code
import torch
def log(*args, **kwargs):
if int(os.environ.get("LOCAL_RANK", 0)) == 0:
if 'flush' not in kwargs:
kwargs['flush'] = True
print(*args, **kwargs)
class PromptType(Enum):
plain = 0
instruct = 1
quality = 2
human_bot = 3
dai_faq = 4
summarize = 5
simple_instruct = 6
instruct_vicuna = 7
instruct_with_end = 8
human_bot_orig = 9
prompt_type_to_model_name = {
'plain': [
'EleutherAI/gpt-j-6B',
'EleutherAI/pythia-6.9b',
'EleutherAI/pythia-12b',
'EleutherAI/pythia-12b-deduped',
'EleutherAI/gpt-neox-20b',
'decapoda-research/llama-7b-hf',
'decapoda-research/llama-13b-hf',
'decapoda-research/llama-30b-hf',
'decapoda-research/llama-65b-hf',
'facebook/mbart-large-50-many-to-many-mmt',
'philschmid/bart-large-cnn-samsum',
'philschmid/flan-t5-base-samsum',
'gpt2',
'distilgpt2',
],
'instruct': [],
'instruct_with_end': ['databricks/dolly-v2-12b'],
'quality': [],
'human_bot': [
'h2oai/h2ogpt-oasst1-512-12b',
'h2oai/h2ogpt-oasst1-512-20b',
'h2oai/h2ogpt-oig-oasst1-512-6.9b',
'h2oai/h2ogpt-research-oasst1-512-30b', # private
],
'dai_faq': [],
'summarize': [],
'simple_instruct': ['t5-small', 't5-large', 'google/flan-t5', 'google/flan-t5-xxl', 'google/flan-ul2'],
'instruct_vicuna': ['AlekseyKorshuk/vicuna-7b'],
'human_bot_orig': ['togethercomputer/GPT-NeoXT-Chat-Base-20B'],
}
inv_prompt_type_to_model_name = {v.strip(): k for k, l in prompt_type_to_model_name.items() for v in l}
inv_prompt_type_to_model_lower = {v.strip().lower(): k for k, l in prompt_type_to_model_name.items() for v in l}
human = '<human>:'
bot = "<bot>:"
prompt_types_strings = []
for p in PromptType:
prompt_types_strings.extend([p.name])
prompt_types = []
for p in PromptType:
prompt_types.extend([p.name, p.value, str(p.value)])
# supported by huggingface evaluate
supported_metrics = ['bleu', 'rouge', 'sacrebleu', 'meteor']
def train(
save_code: bool = False,
run_id: int = None,
base_model: str = 'h2oai/h2ogpt-oig-oasst1-512-6.9b',
# base_model: str = 'h2oai/h2ogpt-oasst1-512-12b',
# base_model: str = 'h2oai/h2ogpt-oasst1-512-20b',
# base_model: str = 'EleutherAI/gpt-neox-20b',
# base_model: str = 'EleutherAI/pythia-12b-deduped',
# base_model: str = 'togethercomputer/GPT-NeoXT-Chat-Base-20B',
# base_model: str = 'decapoda-research/llama-7b-hf',
# base_model: str = 'decapoda-research/llama-13b-hf',
# base_model: str = 'decapoda-research/llama-30b-hf',
# base_model: str = 'EleutherAI/gpt-j-6B',
# only needed if base_model is self-exported HF state without tokenizer
tokenizer_base_model: str = None,
# tokenizer_base_model: str = 'EleutherAI/gpt-neox-20b',
data_path: str = "h2oai/openassistant_oasst1_h2ogpt",
data_col_dict: dict = None,
# data_path: str = "./dai_docs.train.json",
prompt_type: Union[str, int] = "plain", # "plain", "instruct", "quality", "human_bot", "dai_faq"
valid_path: str = None,
# valid_path: str = "./dai_docs.valid.json",
# data_mix_in_path: str = "laion/OIG", # way too big, medium quality
data_mix_in_path: str = "0-hero/OIG-small-chip2", # high quality, 50 MB, good enough for now
data_mix_in_factor: float = 0.0, # >1: more mix-in data, <1: more of data_path data
data_mix_in_col_dict: dict = {'user': 'instruction', 'chip2': 'output'},
data_mix_in_prompt_type: str = "instruct", # just instruction->output, same as instruct
output_dir: str = None,
# LoRA checkpoint continuation
lora_weights: str = "",
# batching training hyperparams
batch_size: int = 128,
micro_batch_size: int = 4,
gradient_checkpointing=False, # unnecessary with gradient accumulation enabled
fp16=True,
train_8bit=True,
# general training hyperparams
num_epochs: float = 1,
learning_rate: float = 3e-4,
# validation settings
val_set_size: int = None,
val_metrics: List[str] = [],
eval_steps: int = None, # to control eval steps via steps
eval_epochs: float = None, # to control eval steps via epochs
# lora hyperparams
lora_r: int = 8,
lora_alpha: int = 16,
lora_dropout: float = 0.05,
lora_target_modules: List[str] = None,
llama_type: bool = None,
llama_flash_attn: bool = False,
# llm hyperparams
train_on_inputs: bool = True, # if False, masks out inputs in loss
group_by_length: bool = False, # if True, faster, but produces an odd training loss curve
resume_from_checkpoint: str = None, # either training checkpoint or final adapter
cutoff_len: int = 512, # larger values use more memory
drop_truncations: bool = False, # if True, drop any truncated long sequences
# torch training params
ddp: bool = True, # set to False if OOM with True, for multi-GPU model parallelism
local_files_only: bool = False, # else will download new versions, normally unwanted
resume_download: bool = True,
use_auth_token: Union[str, bool] = False, # True requires CLI did huggingface-cli login before running
warmup_steps: int = 100,
logging_steps: int = 1,
save_steps: int = None, # must be round multiple of eval_steps
save_total_limit: int = 3,
add_eos_token: bool = False,
):
if llama_flash_attn:
# Need to call this before importing transformers.
from llama_flash_attn_monkey_patch import replace_llama_attn_with_flash_attn
replace_llama_attn_with_flash_attn()
# allow set token directly
use_auth_token = os.environ.get("HUGGINGFACE_API_TOKEN", use_auth_token)
prompt_type = str(prompt_type) # migration from integers
assert prompt_type in prompt_types
world_size = int(os.getenv("WORLD_SIZE", 1))
local_rank = int(os.getenv("LOCAL_RANK", 0))
rank = int(os.getenv("RANK", 0))
print(f"local_rank: {local_rank}")
print(f"global rank: {rank}")
gpus = max(world_size, torch.cuda.device_count())
run_id = run_id or 0
if not data_path:
raise ValueError("No data_path provided")
if not output_dir:
output_dir = f"{base_model.split('/')[-1]}.{data_path.replace('/', '')}.{num_epochs}_epochs.{get_githash() or 'nogit'}.{run_id}"
if os.path.exists(output_dir) and not resume_from_checkpoint:
raise FileExistsError(f"output_dir {output_dir} based on run_id {run_id} already exists. Please pick a different run_id.")
else:
if os.path.exists(output_dir) and not resume_from_checkpoint:
raise FileExistsError(f"output_dir {output_dir} already exists. Please pick a different output_dir, or specify a run_id instead.")
device_map = "auto"
if save_code:
copy_code(run_id)
if tokenizer_base_model is None:
tokenizer_base_model = base_model
if llama_type is None:
llama_type = "llama" in base_model.lower()
if llama_type and llama_flash_attn:
import pkg_resources
try:
pkg_resources.get_distribution('flash_attn')
can_do_flash_attn = True
except (pkg_resources.DistributionNotFound, pkg_resources.ContextualVersionConflict):
can_do_flash_attn = False
if not can_do_flash_attn:
raise RuntimeError("""Flash attention not installed.
NOTE: for current pytorch 2.0, flash attention requires installing cuda 11.7 via https://developer.nvidia.com/cuda-11-7-0-download-archive?target_os=Linux&target_arch=x86_64&Distribution=Ubuntu&target_version=20.04&target_type=runfile_local and then when running, to avoid installing driver, docs, samples, just install toolkit. Then when pip installing flash attention do:
CUDA_HOME=/usr/local/cuda-11.7 pip install flash-attn""")
from llama_flash_attn_monkey_patch import replace_llama_attn_with_flash_attn
replace_llama_attn_with_flash_attn()
assert (
base_model
), "Please specify a --base_model, e.g. --base_model='decapoda-research/llama-7b-hf'"
gradient_accumulation_steps = batch_size // micro_batch_size
assert gradient_accumulation_steps >= world_size, "must increase batch_size for multi-GPU"
device_map = "auto"
locals_dict = locals()
locals_print = '\n'.join(['%s: %s' % (k, v) for k, v in locals_dict.items()])
log(f"Training model with params:\n{locals_print}")
log("Command: %s\nHash: %s" % (str(' '.join(sys.argv)), get_githash()))
max_memory = None
if gpus > 1:
if ddp:
log("Distributed: data parallel")
device_map = {"": int(os.environ.get("LOCAL_RANK") or 0)}
gradient_accumulation_steps = gradient_accumulation_steps // world_size
else:
free_in_GB = int(min(torch.cuda.mem_get_info()) / 1024 ** 3)
max_memory = f"{free_in_GB - 2}GB"
max_memory = {i: max_memory for i in range(gpus)}
log("world_size: %d" % world_size)
log("num_gpus: %d" % gpus)
log("max mem: %s" % max_memory)
model_loader, tokenizer_loader = get_loaders(llama_type=llama_type, model_name=base_model, reward_type=False)
model = model_loader.from_pretrained(
base_model,
load_in_8bit=train_8bit,
device_map=device_map,
torch_dtype=torch.float16,
max_memory=max_memory,
local_files_only=local_files_only,
resume_download=resume_download,
use_auth_token=use_auth_token,
)
if gpus > 1:
if not ddp:
log("model parallel")
model.is_parallelizable = True
model.model_parallel = True
tokenizer = get_tokenizer(tokenizer_loader, tokenizer_base_model, local_files_only, resume_download, use_auth_token)
if train_8bit:
from peft import (
prepare_model_for_int8_training,
)
if "gpt-neox" not in base_model or True:
model = prepare_model_for_int8_training(model)
else:
model = prepare_model_for_int8_training(
model,
output_embedding_layer_name="embed_out", # keep output logits in float32
layer_norm_names=["layer_norm", "layernorm"], # keep all layer norms in higher precision
)
from peft import LoraConfig, get_peft_model, set_peft_model_state_dict, utils
lora_mappings = utils.TRANSFORMERS_MODELS_TO_LORA_TARGET_MODULES_MAPPING.copy()
lora_mappings['distilgpt2'] = ["c_attn"]
if lora_weights:
from peft import PeftModel
model = PeftModel.from_pretrained(
model,
lora_weights,
torch_dtype=torch.float16,
device_map=device_map,
local_files_only=local_files_only,
resume_download=resume_download,
use_auth_token=use_auth_token,
)
elif lora_r > 0:
if lora_target_modules is None:
base_model_lower = base_model.lower()
if base_model_lower in lora_mappings:
lora_target_modules_cand = [lora_mappings[base_model_lower]]
else:
lora_target_modules_cand = [["query_key_value"], ["q_proj", "v_proj"]]
else:
lora_target_modules_cand = [lora_target_modules]
for lora_target_modules in lora_target_modules_cand:
try:
config = LoraConfig(
r=lora_r,
lora_alpha=lora_alpha,
target_modules=lora_target_modules,
lora_dropout=lora_dropout,
bias="none",
task_type="CAUSAL_LM",
)
model = get_peft_model(model, config)
break
except ValueError as e:
if "Target modules" in str(e) and "not found" in str(e):
continue
else:
raise
from peft import PeftModel
assert isinstance(model, PeftModel), "LoRA failed. Please provide --lora_target_modules explicitly."
if resume_from_checkpoint:
# Check the available weights and load them
checkpoint_name = os.path.join(
resume_from_checkpoint, "pytorch_model.bin"
) # Full checkpoint
if not os.path.exists(checkpoint_name):
checkpoint_name = os.path.join(
resume_from_checkpoint, "adapter_model.bin"
) # only LoRA model - LoRA config above has to fit
resume_from_checkpoint = False # So the trainer won't try loading its state
# The two files above have a different name depending on how they were saved, but are actually the same.
if os.path.exists(checkpoint_name):
log(f"Restarting from {checkpoint_name}")
adapters_weights = torch.load(checkpoint_name)
model = set_peft_model_state_dict(model, adapters_weights)
else:
log(f"Checkpoint {checkpoint_name} not found")
print(model)
try:
# only for PeftModel
model.print_trainable_parameters() # Be more transparent about the % of trainable params.
except:
pass
metrics = {}
for name in supported_metrics:
if name in val_metrics:
import evaluate # Causes hang for 'python generate.py' on dual 4090 if imported early, 100% reproducible
metrics[name] = evaluate.load(name)
log("Using Validation Metrics: %s" % str(list(metrics.keys())))
log("Supported Metrics: %s" % supported_metrics)
if val_set_size is None:
if len(metrics) == 0:
val_set_size = 1000
else:
val_set_size = 100
log("Auto set val_set_size %s" % val_set_size)
elif val_set_size < 1.0 and val_set_size != 0:
raise RuntimeError("Fractional validation size not supported.")
from datasets import load_dataset, concatenate_datasets
if valid_path:
data = load_dataset("json", data_files={"train": data_path, "valid": valid_path})
else:
if "json" in data_path:
data = load_dataset("json", data_files={"train": data_path})
else:
data = load_dataset(data_path)
data = data.rename_columns(data_col_dict or {})
valid_data = None
train_data_mix_in = None
valid_data_mix_in = None
if data_mix_in_path and data_mix_in_factor > 0:
# get mix-in training/validation data - to keep model "sane"
num_rows = data["train"].num_rows
log("Loading mix-in dataset: %s" % data_mix_in_path)
if "json" in data_mix_in_path:
data_mix_in = load_dataset("json", data_files={"train": data_mix_in_path})["train"]
else:
data_mix_in = load_dataset(data_mix_in_path)["train"] # can be large
data_mix_in = data_mix_in.rename_columns(data_mix_in_col_dict or {})
mix_in_rows = int(num_rows * data_mix_in_factor)
if mix_in_rows > data_mix_in.num_rows:
# duplicate rows if mix-in is smaller than required
log("Duplicating mixin to compensate for its size for training size and mixin fraction")
data_mix_in = concatenate_datasets([data_mix_in] * int(np.ceil(mix_in_rows / data_mix_in.num_rows)))
# only get as much as we need to balance
valid_size = min(data_mix_in.num_rows // 2, val_set_size or 0)
train_size = max(1, min(data_mix_in.num_rows - valid_size, mix_in_rows))
mixin_small = data_mix_in.train_test_split(
test_size=train_size + valid_size,
shuffle=True, seed=np.random.randint(10000),
)["test"]
if valid_size:
mixin_train_test = mixin_small.train_test_split(
test_size=valid_size, shuffle=False,
)
train_data_mix_in = mixin_train_test["train"]
valid_data_mix_in = mixin_train_test["test"]
else:
train_data_mix_in = mixin_small
if "prompt_type" not in train_data_mix_in.column_names:
train_data_mix_in = train_data_mix_in.add_column(
"prompt_type",
[data_mix_in_prompt_type] * train_data_mix_in.num_rows,
)
log("Added prompt type %s to mix-in training data" % data_mix_in_prompt_type)
if valid_data_mix_in and "prompt_type" not in valid_data_mix_in.column_names:
valid_data_mix_in = valid_data_mix_in.add_column(
"prompt_type",
[data_mix_in_prompt_type] * valid_data_mix_in.num_rows,
)
log("Added prompt type %s to mix-in validation data" % data_mix_in_prompt_type)
log("Created mix-in data:\nTrain %s\nValid %s" % (train_data_mix_in, valid_data_mix_in))
# get our own training/validation data - for fine-tuning
if val_set_size > 0 and not valid_path and not data_mix_in_path:
# create valid split from train
train_val = data["train"].train_test_split(
test_size=val_set_size, shuffle=True, seed=42
)
train_data = train_val["train"]
valid_data = train_val["test"]
else:
train_data = data["train"]
if valid_path:
# use given valid split, has priority over data_mix_in_path
valid_data = data["valid"]
if "prompt_type" not in train_data.column_names:
train_data = train_data.add_column(
"prompt_type",
[prompt_type] * train_data.num_rows,
)
log("Added prompt type %s to training data" % prompt_type)
if valid_data and "prompt_type" not in valid_data.column_names:
valid_data = valid_data.add_column(
"prompt_type",
[prompt_type] * valid_data.num_rows,
)
log("Added prompt type %s to validation data" % prompt_type)
assert train_data is not None
generate_and_tokenize_prompt_fun = partial(generate_and_tokenize_prompt, prompt_type=prompt_type,
train_on_inputs=train_on_inputs, add_eos_token=add_eos_token,
cutoff_len=cutoff_len, tokenizer=tokenizer)
# shuffle and tokenize data
if train_data_mix_in:
train_data = concatenate_datasets([train_data, train_data_mix_in])
log("Tokenizing %s training rows" % train_data.num_rows)
train_data = train_data.shuffle().map(generate_and_tokenize_prompt_fun, num_proc=os.cpu_count() // torch.cuda.device_count())
if drop_truncations:
log("avoid keeping truncated cases to avoid contaminating model with truncation cases. Original size: %s" % train_data.num_rows)
prune_long_sequences_func = partial(prune_long_sequences, cutoff_len=cutoff_len)
train_data = train_data.filter(prune_long_sequences_func, num_proc=os.cpu_count() // torch.cuda.device_count())
log("avoid keeping truncated cases to avoid contaminating model with truncation cases. New size: %s" % train_data.num_rows)
train_set_size = len(train_data)
if valid_data and valid_data_mix_in:
valid_data = concatenate_datasets([valid_data, valid_data_mix_in])
elif valid_data_mix_in:
valid_data = valid_data_mix_in
if valid_data:
log("Tokenizing %s validation rows" % valid_data.num_rows)
valid_data = valid_data.shuffle().map(generate_and_tokenize_prompt_fun, num_proc=os.cpu_count() // torch.cuda.device_count())
val_set_size = len(valid_data)
else:
val_set_size = 0
log("Final fine-tuning data:\nTrain %s\nValid %s" % (train_data, valid_data))
sample_row_dict = train_data[:1]
del sample_row_dict['input_ids']
del sample_row_dict['attention_mask']
del sample_row_dict['labels']
log("Sample input: %s" % sample_row_dict)
try:
import neptune
from transformers.integrations import NeptuneCallback
neptune_run = neptune.init_run(
source_files=[],
)
log("Connected to Neptune.")
except ImportError:
neptune_run = None
log("Please pip install neptune for tracking.")
except neptune.exceptions.NeptuneMissingApiTokenException:
neptune_run = None
os.environ["NEPTUNE_MODE"] = 'debug'
log("No neptune configured, set NEPTUNE_API_TOKEN env var.")
if neptune_run:
neptune_callback = NeptuneCallback(run=neptune_run)
callbacks = [neptune_callback]
else:
from transformers.integrations import TensorBoardCallback, is_tensorboard_available
if is_tensorboard_available:
# tensorboard --logdir=runs/
from torch.utils.tensorboard import SummaryWriter
tb_writer = SummaryWriter()
callbacks = [TensorBoardCallback(tb_writer=tb_writer)]
else:
callbacks = []
expected_steps = (train_set_size * num_epochs) // batch_size
if eval_steps is None and eval_epochs is None:
# 20 evaluations for a run
eval_steps = max(1, int(expected_steps / 20))
log("Auto set eval_steps to %s out of %s total training steps" % (eval_steps, expected_steps))
elif eval_steps is None and eval_epochs is not None:
eval_steps = max(1, int(expected_steps * eval_epochs / num_epochs))
log("Auto converted eval_epochs=%s to eval_steps %s"
" out of %s total training steps" % (eval_epochs, eval_steps, expected_steps))
if save_steps is None:
save_steps = eval_steps
log("Auto step save_steps to %s" % save_steps)
elif save_steps > eval_steps:
# save steps must be round multiple of eval_steps
save_steps0 = save_steps
save_steps = max(1, (save_steps//eval_steps)) * eval_steps
if save_steps0 != save_steps:
log("Auto converted save_steps from %s to %s" % (save_steps0, save_steps))
def compute_metrics(eval_preds):
# e.g. see: https://huggingface.co/docs/transformers/v4.25.1/en/tasks/translation#evaluate
inputs = eval_preds.inputs
label_ids = eval_preds.label_ids
predictions = eval_preds.predictions
#inputs = np.where(inputs != -100, inputs, tokenizer.pad_token_id)
#decoded_inputs = tokenizer.batch_decode(inputs, skip_special_tokens=True)
#decoded_inputs = [pred.strip() for pred in decoded_inputs]
label_ids = np.where(label_ids != -100, label_ids, tokenizer.pad_token_id)
# tokenizer behavior like generate time
decoded_labels = tokenizer.batch_decode(label_ids, skip_special_tokens=True,
clean_up_tokenization_spaces=True)
decoded_labels = [pred.strip() for pred in decoded_labels]
predictions = np.argmax(predictions, -1)
predictions = np.where(predictions != -100, predictions, tokenizer.pad_token_id)
# tokenizer behavior like generate time
decoded_predictions = tokenizer.batch_decode(predictions, skip_special_tokens=True,
clean_up_tokenization_spaces=True)
decoded_predictions = [pred.strip() for pred in decoded_predictions]
result = {}
for metric in metrics.values():
result1 = metric.compute(predictions=decoded_predictions, references=decoded_labels)
# get rid of lists, for precision etc., for now
numeric_results = {k: v for k, v in result1.items() if isinstance(v, (int, float))}
result.update(numeric_results)
return result
# the callback that computes metrics of interest
if val_metrics:
trainer_kwargs = dict(compute_metrics=compute_metrics)
else:
trainer_kwargs = dict()
import transformers
trainer = transformers.Trainer(
model=model,
tokenizer=tokenizer,
train_dataset=train_data,
eval_dataset=valid_data,
# NOTE: CausalLM is not supporting Seq2SeqTrainingArguments arguments, but not incompatible
args=transformers.Seq2SeqTrainingArguments(
per_device_train_batch_size=micro_batch_size,
per_device_eval_batch_size=1,
eval_accumulation_steps=10,
# predict_with_generate=True, # SEQ2SEQ only
include_inputs_for_metrics=True,
gradient_accumulation_steps=gradient_accumulation_steps,
warmup_steps=warmup_steps,
num_train_epochs=num_epochs,
learning_rate=learning_rate,
gradient_checkpointing=gradient_checkpointing,
fp16=fp16,
# cosnider 8-bit adam: https://huggingface.co/docs/transformers/v4.18.0/en/performance#8bit-adam
optim="adamw_torch", # consider "adafactor" to save memory
logging_steps=logging_steps,
logging_strategy="steps",
evaluation_strategy="steps" if val_set_size > 0 else "no",
save_strategy="steps",
eval_steps=eval_steps if val_set_size > 0 else None,
save_steps=save_steps,
output_dir=output_dir,
save_total_limit=save_total_limit,
load_best_model_at_end=True if val_set_size > 0 else False,
ddp_find_unused_parameters=False if ddp else None,
group_by_length=group_by_length,
#fsdp="shard_grad_op auto_wrap" if gpus > 1 and not ddp else None,
#fsdp_min_num_params=20000 if gpus > 1 and not ddp else None,
report_to='tensorboard' if not neptune_run else 'neptune',
),
data_collator=transformers.DataCollatorForSeq2Seq(
tokenizer, pad_to_multiple_of=8, return_tensors="pt", padding=True
),
callbacks=callbacks,
**trainer_kwargs,
)
model.config.use_cache = False
old_state_dict = model.state_dict
from peft import get_peft_model_state_dict
model.state_dict = (
lambda self, *_, **__: get_peft_model_state_dict(self, old_state_dict())
).__get__(model, type(model))
if torch.__version__ >= "2" and sys.platform != "win32":
model = torch.compile(model)
# WIP (not generally replacing layers until pytorch 2.1)
if not llama_flash_attn:
torch.backends.cuda.enable_flash_sdp(True)
if gpus > 1 and not ddp:
assert trainer.is_model_parallel
else:
assert not trainer.is_model_parallel
trainer.train(resume_from_checkpoint=resume_from_checkpoint)
model.save_pretrained(output_dir)
log("\n If there's a warning about missing keys above, please disregard :)")
def get_loaders(llama_type, model_name, reward_type):
# NOTE: Some models need specific new prompt_type
# E.g. t5_xxl_true_nli_mixture has input format: "premise: PREMISE_TEXT hypothesis: HYPOTHESIS_TEXT".)
if llama_type:
from transformers import LlamaForCausalLM, LlamaTokenizer
model_loader = LlamaForCausalLM
tokenizer_loader = LlamaTokenizer
elif 'distilgpt2' in model_name.lower():
from transformers import AutoModelForCausalLM, AutoTokenizer
return AutoModelForCausalLM, AutoTokenizer
elif 'gpt2' in model_name.lower():
from transformers import GPT2LMHeadModel, GPT2Tokenizer
return GPT2LMHeadModel, GPT2Tokenizer
elif 'mbart-' in model_name.lower():
from transformers import MBartForConditionalGeneration, MBart50TokenizerFast
return MBartForConditionalGeneration, MBart50TokenizerFast
elif 't5' == model_name.lower() or \
't5-' in model_name.lower() or \
'flan-' in model_name.lower():
from transformers import AutoTokenizer, T5ForConditionalGeneration
return T5ForConditionalGeneration, AutoTokenizer
elif 'bigbird' in model_name:
from transformers import BigBirdPegasusForConditionalGeneration, AutoTokenizer
return BigBirdPegasusForConditionalGeneration, AutoTokenizer
elif 'bart-large-cnn-samsum' in model_name or 'flan-t5-base-samsum' in model_name:
from transformers import pipeline
return pipeline, "summarization"
elif reward_type or 'OpenAssistant/reward-model'.lower() in model_name.lower():
from transformers import AutoModelForSequenceClassification, AutoTokenizer
return AutoModelForSequenceClassification, AutoTokenizer
else:
from transformers import AutoTokenizer, AutoModelForCausalLM
model_loader = AutoModelForCausalLM
tokenizer_loader = AutoTokenizer
return model_loader, tokenizer_loader
def get_tokenizer(tokenizer_loader, tokenizer_base_model, local_files_only, resume_download, use_auth_token):
tokenizer = tokenizer_loader.from_pretrained(tokenizer_base_model,
local_files_only=local_files_only,
resume_download=resume_download,
use_auth_token=use_auth_token)
tokenizer.pad_token_id = 0 # different from the eos token
# when generating, we will use the logits of right-most token to predict the next token
# so the padding should be on the left,
# e.g. see: https://huggingface.co/transformers/v4.11.3/model_doc/t5.html#inference
tokenizer.padding_side = "left" # Allow batched inference
return tokenizer
def tokenize(prompt, tokenizer, cutoff_len, add_eos_token=False):
# there's probably a way to do this with the tokenizer settings
# but again, gotta move fast
result = tokenizer(
prompt,
truncation=True,
max_length=cutoff_len,
padding=False,
return_tensors=None,
)
if (
result["input_ids"][-1] != tokenizer.eos_token_id
and len(result["input_ids"]) < cutoff_len
and add_eos_token
):
result["input_ids"].append(tokenizer.eos_token_id)
result["attention_mask"].append(1)
result["labels"] = result["input_ids"].copy()
return result
def prune_long_sequences(data_point, cutoff_len=None):
"""
Prune if too long for tokenizer, so truncation doesn't lead training to learn from truncated language
:param data_point:
:param cutoff_len:
:return:
"""
assert cutoff_len is not None
return len(data_point['input_ids']) < cutoff_len
def generate_and_tokenize_prompt(data_point, prompt_type=None, train_on_inputs=False, add_eos_token=False,
cutoff_len=None, tokenizer=None):
assert prompt_type is not None
assert cutoff_len is not None
assert tokenizer is not None
full_prompt, _, _ = generate_prompt(data_point, prompt_type, False, False)
tokenized_full_prompt = tokenize(full_prompt, tokenizer, cutoff_len, add_eos_token=add_eos_token)
if not train_on_inputs:
user_prompt, _, _ = generate_prompt({**data_point, "output": ""}, prompt_type, False, False)
tokenized_user_prompt = tokenize(user_prompt, tokenizer, cutoff_len, add_eos_token=add_eos_token)
user_prompt_len = len(tokenized_user_prompt["input_ids"])
if add_eos_token:
user_prompt_len -= 1
# ignore_index=-100 ensures torch/tf don't include padding token id in CrossEntropyLoss
tokenized_full_prompt["labels"] = [
-100
] * user_prompt_len + tokenized_full_prompt["labels"][
user_prompt_len:
] # could be sped up, probably
return tokenized_full_prompt
def get_prompt(prompt_type, chat, context, reduced):
if prompt_type in [-1, "-1", "plain"]:
promptA = promptB = PreInstruct = PreInput = PreResponse = ''
terminate_response = []
elif prompt_type == 'simple_instruct':
promptA = promptB = PreInstruct = PreInput = PreResponse = None
terminate_response = []
elif prompt_type in [0, "0", "instruct"] or prompt_type in [7, "7", "instruct_with_end"]:
promptA = 'Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.\n' if not (chat and reduced) else ''
promptB = 'Below is an instruction that describes a task. Write a response that appropriately completes the request.\n' if not (chat and reduced) else ''
PreInstruct = """
### Instruction:
"""
PreInput = """
### Input:
"""
PreResponse = """
### Response:
"""
if prompt_type in [7, "7", "instruct_with_end"]:
terminate_response = ['### End']
else:
terminate_response = None
elif prompt_type in [1, "1", "quality"]:
promptA = 'Write a detailed high-quality, accurate, fair, Response with about 100 words by following the Instruction as applied on the Input.\n' if not (chat and reduced) else ''
promptB = 'Write a detailed high-quality, accurate, fair, Response with about 100 words by following the Instruction.\n' if not (chat and reduced) else ''
PreInstruct = """
### Instruction:
"""
PreInput = """
### Input:
"""
PreResponse = """
### Response:
"""
terminate_response = None
elif prompt_type in [2, "2", "human_bot", 9, "9", "human_bot_orig"]:
if reduced or context or prompt_type in [2, "2", "human_bot"]:
preprompt = ''
else:
cur_date = time.strftime('%Y-%m-%d')
cur_time = time.strftime('%H:%M:%S %p %Z')
PRE_PROMPT = """\
Current Date: {}
Current Time: {}
"""
preprompt = PRE_PROMPT.format(cur_date, cur_time)
start = human
promptB = promptA = '%s%s ' % (preprompt, start)
PreInstruct = ""
PreInput = None
if reduced:
# when making context, want it to appear as-if LLM generated, which starts with space after :
PreResponse = bot + ' '
else:
# normally LLM adds space after this, because was how trained.
# if add space here, non-unique tokenization will often make LLM produce wrong output
PreResponse = bot
terminate_response = [start, PreResponse]
elif prompt_type in [3, "3", "dai_faq"]:
promptA = ''
promptB = 'Answer the following Driverless AI question.\n'
PreInstruct = """
### Driverless AI frequently asked question:
"""
PreInput = None
PreResponse = """
### Driverless AI documentation answer:
"""
terminate_response = ['\n\n']
elif prompt_type in [5, "5", "summarize"]:
promptA = promptB = PreInput = ''
PreInstruct = '## Main Text\n\n'
PreResponse = '\n\n## Summary\n\n'
terminate_response = None
elif prompt_type in [6, "6", "instruct_vicuna"]:
promptA = promptB = "A chat between a curious human and an artificial intelligence assistant. " \
"The assistant gives helpful, detailed, and polite answers to the human's questions." if not (chat and reduced) else ''
PreInstruct = """
### Human:
"""
PreInput = None
PreResponse = """
### Assistant:
"""
terminate_response = ['### Human:'] # but only allow terminate after prompt is found correctly, else can't terminate
else:
raise RuntimeError("No such prompt_type=%s" % prompt_type)
return promptA, promptB, PreInstruct, PreInput, PreResponse, terminate_response
def generate_prompt(data_point, prompt_type, chat, reduced):
context = data_point.get('context')
if context is None:
context = ''
instruction = data_point.get('instruction')
input = data_point.get('input')
output = data_point.get('output')
prompt_type = data_point.get('prompt_type', prompt_type)
assert prompt_type in prompt_types, "Bad prompt type: %s" % prompt_type
promptA, promptB, PreInstruct, PreInput, PreResponse, terminate_response = get_prompt(prompt_type, chat, context, reduced)
prompt = context if not reduced else ''
if input and promptA:
prompt += f"""{promptA}"""
elif promptB:
prompt += f"""{promptB}"""
if instruction and PreInstruct is not None and input and PreInput is not None:
prompt += f"""{PreInstruct}{instruction}{PreInput}{input}"""
prompt = inject_newline(prompt_type, prompt)
elif instruction and input and PreInstruct is None and PreInput is not None:
prompt += f"""{PreInput}{instruction}
{input}"""
prompt = inject_newline(prompt_type, prompt)
elif input and instruction and PreInput is None and PreInstruct is not None:
prompt += f"""{PreInstruct}{instruction}
{input}"""
prompt = inject_newline(prompt_type, prompt)
elif instruction and PreInstruct is not None:
prompt += f"""{PreInstruct}{instruction}"""
prompt = inject_newline(prompt_type, prompt)
elif input and PreInput is not None:
prompt += f"""{PreInput}{input}"""
prompt = inject_newline(prompt_type, prompt)
elif input and instruction and PreInput is not None:
prompt += f"""{PreInput}{instruction}{input}"""
prompt = inject_newline(prompt_type, prompt)
elif input and instruction and PreInstruct is not None:
prompt += f"""{PreInstruct}{instruction}{input}"""
prompt = inject_newline(prompt_type, prompt)
elif input and instruction:
# i.e. for simple_instruct
prompt += f"""{instruction}: {input}"""
prompt = inject_newline(prompt_type, prompt)
elif input:
prompt += f"""{input}"""
prompt = inject_newline(prompt_type, prompt)
elif instruction:
prompt += f"""{instruction}"""
prompt = inject_newline(prompt_type, prompt)
if PreResponse is not None:
prompt += f"""{PreResponse}"""
pre_response = PreResponse # Don't use strip
else:
pre_response = ''
if output:
prompt += f"""{output}"""
return prompt, pre_response, terminate_response
def inject_newline(prompt_type, prompt):
if prompt_type not in [-1, '-1', 'plain', 'simple_instruct']:
# only add new line if structured prompt, while 'plain' is just generation of next tokens from input
prompt += '\n'
return prompt
example_data_point0 = dict(instruction="Summarize",
input="Ducks eat seeds by the lake, then swim in the lake where fish eat small animals.",
output="Ducks eat and swim at the lake.")
example_data_point1 = dict(instruction="Who is smarter, Einstein or Newton?",
output="Einstein.")
example_data_point2 = dict(input="Who is smarter, Einstein or Newton?",
output="Einstein.")
example_data_points = [example_data_point0, example_data_point1, example_data_point2]
def test_train_prompt(prompt_type='instruct', data_point=0):
example_data_point = example_data_points[data_point]
return generate_prompt(example_data_point, prompt_type, False, False)
def test_debug():
fire.Fire(train)
if __name__ == "__main__":
CONFIG = "NCCL_P2P_LEVEL=LOC WORLD_SIZE=5 torchrun --nnodes=5 --master_addr=10.10.10.2 --master_port=1111 --nproc_per_node=1"
CMD = "finetune.py --data_path=config.json --num_epochs=1 --base_model=decapoda-research/llama-13b-hf"
log(f"""
Example runs on 4 GPUs:
WORLD_SIZE=4 CUDA_VISIBLE_DEVICES="0,1,2,3" torchrun --nproc_per_node=4 finetune.py --base_model='decapoda-research/llama-7b-hf' --data_path=data/config.json --run_id=0 &> 0.log
WORLD_SIZE=4 CUDA_VISIBLE_DEVICES="0,1,2,3" torchrun --nproc_per_node=4 finetune.py --base_model='decapoda-research/llama-30b-hf' --data_path=data/config.json --batch_size=16 --micro_batch_size=1 --run_id=1 --save_code=True &> 1.log
WORLD_SIZE=4 CUDA_VISIBLE_DEVICES="0,1,2,3" torchrun --nproc_per_node=4 finetune.py --base_model='EleutherAI/gpt-j-6B' --data_path=data/config.json --run_id=2 &> 2.log
WORLD_SIZE=4 CUDA_VISIBLE_DEVICES="0,1,2,3" torchrun --nproc_per_node=4 finetune.py --base_model='EleutherAI/gpt-neox-20b' --data_path=data/config.json --run_id=8 --batch_size=16 --micro_batch_size=4 &> 8.log
WORLD_SIZE=4 CUDA_VISIBLE_DEVICES="0,1,2,3" torchrun --nproc_per_node=4 finetune.py --base_model='togethercomputer/GPT-NeoXT-Chat-Base-20B' --data_path=data/config.json --prompt_type='dai_faq' --run_id=13 --batch_size=16 --micro_batch_size=4 --num_epochs=100 --val_set_size=0 data_mix_in_path='' &> 13.log
WORLD_SIZE=4 CUDA_VISIBLE_DEVICES="0,1,2,3" torchrun --nproc_per_node=4 finetune.py --base_model='togethercomputer/GPT-NeoXT-Chat-Base-20B' --data_path=data/config.json --run_id=28 --batch_size=16 --micro_batch_size=4 --num_epochs=8 --val_set_size=0 --data_mix_in_factor=0.1 --data_mix_in_prompt_type='human_bot' --save_code=True --cutoff_len=512 &> 28.log
All metrics:
CUDA_VISIBLE_DEVICES= finetune.py --data_mix_in_factor=0 --eval_steps=100 --warmup_steps=2 --val_set_size=100 --val_metrics="['bleu', 'rouge', 'sacrebleu', 'meteor']"
# Fine-tune 20B on 24GB GPUs across 3 nodes with 3+2+2 GPUs
rippa>
NCCL_P2P_LEVEL=LOC WORLD_SIZE=7 CUDA_VISIBLE_DEVICES="0,1,2" torchrun --node_rank 0 --nproc_per_node=3 --master_port=1234 --nnodes=3 --master_addr=10.10.10.2 finetune.py --data_path=merged_shuffled_OIG_87f6a1e788.json --micro_batch_size=1 --batch_size=7 --cutoff_len=512 --run_id=17 &>log.17.rank0
ova>
NCCL_P2P_LEVEL=LOC WORLD_SIZE=7 CUDA_VISIBLE_DEVICES="0,1" torchrun --node_rank 1 --nproc_per_node=2 --master_port=1234 --nnodes=3 --master_addr=10.10.10.2 finetune.py --data_path=merged_shuffled_OIG_87f6a1e788.json --micro_batch_size=1 --batch_size=7 --cutoff_len=512 --run_id=17 &>log.17.rank1
timemachine>
NCCL_P2P_LEVEL=LOC WORLD_SIZE=7 CUDA_VISIBLE_DEVICES="0,1" torchrun --node_rank 2 --nproc_per_node=2 --master_port=1234 --nnodes=3 --master_addr=10.10.10.2 finetune.py --data_path=merged_shuffled_OIG_87f6a1e788.json --micro_batch_size=1 --batch_size=7 --cutoff_len=512 --run_id=17 &>log.17.rank2
""", flush=True)
if os.environ.get("LOCAL_RANK") is None:
# then not using torchrun, so can't do distributed, ensure CVD set
assert os.environ.get("CUDA_VISIBLE_DEVICES") is not None, "Run python script using: torchrun finetune.py OR set CUDA_VISIBLE_DEVICES to single GPU"
fire.Fire(train)
|