Spaces:
Runtime error
Runtime error
File size: 4,899 Bytes
efe0924 8910711 efe0924 8910711 efe0924 6a0a9f7 efe0924 80d4e55 efe0924 8d30b62 efe0924 80d4e55 8d30b62 80d4e55 8d30b62 80d4e55 efe0924 8d30b62 efe0924 8d30b62 8910711 8d30b62 8910711 8d30b62 8910711 80d4e55 efe0924 8d30b62 efe0924 8d30b62 efe0924 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 |
"""
Client test.
Run server:
python generate.py --base_model=h2oai/h2ogpt-oig-oasst1-512-6.9b
NOTE: For private models, add --use-auth_token=True
NOTE: --infer_devices=True (default) must be used for multi-GPU in case see failures with cuda:x cuda:y mismatches.
Currently, this will force model to be on a single GPU.
Then run this client as:
python client_test.py
For HF spaces:
HOST="https://h2oai-h2ogpt-chatbot.hf.space" python client_test.py
Result:
Loaded as API: https://h2oai-h2ogpt-chatbot.hf.space β
{'instruction_nochat': 'Who are you?', 'iinput_nochat': '', 'response': 'I am h2oGPT, a large language model developed by LAION.'}
For demo:
HOST="https://gpt.h2o.ai" python client_test.py
Result:
Loaded as API: https://gpt.h2o.ai β
{'instruction_nochat': 'Who are you?', 'iinput_nochat': '', 'response': 'I am h2oGPT, a chatbot created by LAION.'}
"""
import time
import os
import markdown # pip install markdown
from bs4 import BeautifulSoup # pip install beautifulsoup4
debug = False
os.environ['HF_HUB_DISABLE_TELEMETRY'] = '1'
def get_client(serialize=True):
from gradio_client import Client
client = Client(os.getenv('HOST', "http://localhost:7860"), serialize=serialize)
if debug:
print(client.view_api(all_endpoints=True))
return client
def get_args(prompt, prompt_type, chat=False, stream_output=False, max_new_tokens=50):
from collections import OrderedDict
kwargs = OrderedDict(instruction=prompt if chat else '', # only for chat=True
iinput='', # only for chat=True
context='',
# streaming output is supported, loops over and outputs each generation in streaming mode
# but leave stream_output=False for simple input/output mode
stream_output=stream_output,
prompt_type=prompt_type,
temperature=0.1,
top_p=0.75,
top_k=40,
num_beams=1,
max_new_tokens=max_new_tokens,
min_new_tokens=0,
early_stopping=False,
max_time=20,
repetition_penalty=1.0,
num_return_sequences=1,
do_sample=True,
chat=chat,
instruction_nochat=prompt if not chat else '',
iinput_nochat='', # only for chat=False
langchain_mode='Disabled',
)
if chat:
# add chatbot output on end. Assumes serialize=False
kwargs.update(dict(chatbot=[['', None]]))
return kwargs, list(kwargs.values())
def test_client_basic():
return run_client_nochat(prompt='Who are you?', prompt_type='human_bot', max_new_tokens=50)
def run_client_nochat(prompt, prompt_type, max_new_tokens):
kwargs, args = get_args(prompt, prompt_type, chat=False, max_new_tokens=max_new_tokens)
api_name = '/submit_nochat'
client = get_client(serialize=True)
res = client.predict(
*tuple(args),
api_name=api_name,
)
res_dict = dict(prompt=kwargs['instruction_nochat'], iinput=kwargs['iinput_nochat'],
response=md_to_text(res))
print(res_dict)
return res_dict
def test_client_chat():
return run_client_chat(prompt='Who are you?', prompt_type='human_bot', stream_output=False, max_new_tokens=50)
def run_client_chat(prompt, prompt_type, stream_output, max_new_tokens):
kwargs, args = get_args(prompt, prompt_type, chat=True, stream_output=stream_output, max_new_tokens=max_new_tokens)
client = get_client(serialize=False)
res = client.predict(*tuple(args), api_name='/instruction')
args[-1] += [res[-1]]
res_dict = kwargs
res_dict['prompt'] = prompt
if not kwargs['stream_output']:
res = client.predict(*tuple(args), api_name='/instruction_bot')
res_dict['response'] = res[0][-1][1]
print(md_to_text(res_dict['response']))
return res_dict
else:
job = client.submit(*tuple(args), api_name='/instruction_bot')
res1 = ''
while not job.done():
outputs_list = job.communicator.job.outputs
if outputs_list:
res = job.communicator.job.outputs[-1]
res1 = res[0][-1][-1]
res1 = md_to_text(res1)
print(res1)
time.sleep(0.1)
print(job.outputs())
res_dict['response'] = res1
return res_dict
def md_to_text(md):
assert md is not None, "Markdown is None"
html = markdown.markdown(md)
soup = BeautifulSoup(html, features='html.parser')
return soup.get_text()
if __name__ == '__main__':
test_client_basic()
|