h2ogpt-chatbot / client_test.py
pseudotensor's picture
Update with h2oGPT hash 880439992dce589c865d5ba3a4f183902f6fc8ec
8d30b62
raw
history blame
4.9 kB
"""
Client test.
Run server:
python generate.py --base_model=h2oai/h2ogpt-oig-oasst1-512-6.9b
NOTE: For private models, add --use-auth_token=True
NOTE: --infer_devices=True (default) must be used for multi-GPU in case see failures with cuda:x cuda:y mismatches.
Currently, this will force model to be on a single GPU.
Then run this client as:
python client_test.py
For HF spaces:
HOST="https://h2oai-h2ogpt-chatbot.hf.space" python client_test.py
Result:
Loaded as API: https://h2oai-h2ogpt-chatbot.hf.space βœ”
{'instruction_nochat': 'Who are you?', 'iinput_nochat': '', 'response': 'I am h2oGPT, a large language model developed by LAION.'}
For demo:
HOST="https://gpt.h2o.ai" python client_test.py
Result:
Loaded as API: https://gpt.h2o.ai βœ”
{'instruction_nochat': 'Who are you?', 'iinput_nochat': '', 'response': 'I am h2oGPT, a chatbot created by LAION.'}
"""
import time
import os
import markdown # pip install markdown
from bs4 import BeautifulSoup # pip install beautifulsoup4
debug = False
os.environ['HF_HUB_DISABLE_TELEMETRY'] = '1'
def get_client(serialize=True):
from gradio_client import Client
client = Client(os.getenv('HOST', "http://localhost:7860"), serialize=serialize)
if debug:
print(client.view_api(all_endpoints=True))
return client
def get_args(prompt, prompt_type, chat=False, stream_output=False, max_new_tokens=50):
from collections import OrderedDict
kwargs = OrderedDict(instruction=prompt if chat else '', # only for chat=True
iinput='', # only for chat=True
context='',
# streaming output is supported, loops over and outputs each generation in streaming mode
# but leave stream_output=False for simple input/output mode
stream_output=stream_output,
prompt_type=prompt_type,
temperature=0.1,
top_p=0.75,
top_k=40,
num_beams=1,
max_new_tokens=max_new_tokens,
min_new_tokens=0,
early_stopping=False,
max_time=20,
repetition_penalty=1.0,
num_return_sequences=1,
do_sample=True,
chat=chat,
instruction_nochat=prompt if not chat else '',
iinput_nochat='', # only for chat=False
langchain_mode='Disabled',
)
if chat:
# add chatbot output on end. Assumes serialize=False
kwargs.update(dict(chatbot=[['', None]]))
return kwargs, list(kwargs.values())
def test_client_basic():
return run_client_nochat(prompt='Who are you?', prompt_type='human_bot', max_new_tokens=50)
def run_client_nochat(prompt, prompt_type, max_new_tokens):
kwargs, args = get_args(prompt, prompt_type, chat=False, max_new_tokens=max_new_tokens)
api_name = '/submit_nochat'
client = get_client(serialize=True)
res = client.predict(
*tuple(args),
api_name=api_name,
)
res_dict = dict(prompt=kwargs['instruction_nochat'], iinput=kwargs['iinput_nochat'],
response=md_to_text(res))
print(res_dict)
return res_dict
def test_client_chat():
return run_client_chat(prompt='Who are you?', prompt_type='human_bot', stream_output=False, max_new_tokens=50)
def run_client_chat(prompt, prompt_type, stream_output, max_new_tokens):
kwargs, args = get_args(prompt, prompt_type, chat=True, stream_output=stream_output, max_new_tokens=max_new_tokens)
client = get_client(serialize=False)
res = client.predict(*tuple(args), api_name='/instruction')
args[-1] += [res[-1]]
res_dict = kwargs
res_dict['prompt'] = prompt
if not kwargs['stream_output']:
res = client.predict(*tuple(args), api_name='/instruction_bot')
res_dict['response'] = res[0][-1][1]
print(md_to_text(res_dict['response']))
return res_dict
else:
job = client.submit(*tuple(args), api_name='/instruction_bot')
res1 = ''
while not job.done():
outputs_list = job.communicator.job.outputs
if outputs_list:
res = job.communicator.job.outputs[-1]
res1 = res[0][-1][-1]
res1 = md_to_text(res1)
print(res1)
time.sleep(0.1)
print(job.outputs())
res_dict['response'] = res1
return res_dict
def md_to_text(md):
assert md is not None, "Markdown is None"
html = markdown.markdown(md)
soup = BeautifulSoup(html, features='html.parser')
return soup.get_text()
if __name__ == '__main__':
test_client_basic()