File size: 2,500 Bytes
42b81a8
 
 
 
42990eb
 
42b81a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42990eb
 
 
 
 
 
42b81a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
import gradio as gr
import json
import os
import shutil
# import magic
# import ollama
from langchain_community.embeddings.sentence_transformer import SentenceTransformerEmbeddings
from langchain_community.vectorstores.qdrant import Qdrant
from langchain_core.runnables import RunnablePassthrough
from langchain_core.documents import Document
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.output_parsers import StrOutputParser
from langchain_community.chat_models import ChatOllama
from langchain_chroma import Chroma
from hugchat import hugchat
from hugchat.login import Login
import dotenv

dotenv.load_dotenv()


class GradioApp:
    def __init__(self):
        self.llm = ChatOllama(model="phi3:3.8b", base_url="http://localhost:11434", num_gpu=32)
        hf_email = os.getenv("HF_EMAIL")
        hf_pass = os.getenv("HF_PASS")
        sign = Login(hf_email, hf_pass)
        cookies = sign.login()
        sign.saveCookies()
        self.llm = hugchat.ChatBot(cookies=cookies.get_dict())
        self.chain = (self.llm | StrOutputParser())

    def user(self,user_message, history):
        return "", history + [[user_message, None]]
    
    def bot(self,history):
        print(history)
        prompt = history[-1][0] or ""
        for chunks in self.chain.stream(prompt):
            history[-1][1] = history[-1][1] or ""
            history[-1][1] += chunks
            yield history
        history[-1][1] = history[-1][1] or ""
        history[-1][1] += self.chain.invoke(prompt)
        print(history[-1][1])
        print(history)
        return history


with gr.Blocks() as demo:
    gradio_app = GradioApp()
    # files = gr.Files(label="Upload Documents and Medical Reports", type="filepath", file_types=["pdf", "docx", "jpg", "jpeg", "png"])
    # upload_button = gr.UploadButton(label="Upload Documents and Medical Reports", type="filepath", file_count='multiple', file_types=["pdf", "docx", "jpg", "jpeg", "png"], )
    output_text = gr.Markdown(label="Output", value="   ")
    infer_status = gr.Label("Infer Status: ", visible=False)


    # upload_button.upload(gradio_app.upload_files, upload_button, [files, output_text])
    chatbot = gr.Chatbot()  
    msg = gr.Textbox()
    clear = gr.Button("Clear")
    msg.submit(gradio_app.user, [msg, chatbot], [msg, chatbot], queue=False).then(
      gradio_app.bot, chatbot, chatbot
    )
    clear.click(lambda: None, None, chatbot, queue=False)

            
# demo.queue()
demo.launch(share=True)