Spaces:
Sleeping
Sleeping
h3110Fr13nd
commited on
Commit
·
d48537f
1
Parent(s):
79340f2
RAG using Chroma Langchain
Browse files
README.md
CHANGED
@@ -18,4 +18,8 @@
|
|
18 |
HF_PASS=your-password
|
19 |
```
|
20 |
|
21 |
-
Now you can run the chatbot and interact with it.
|
|
|
|
|
|
|
|
|
|
18 |
HF_PASS=your-password
|
19 |
```
|
20 |
|
21 |
+
Now you can run the chatbot and interact with it.
|
22 |
+
|
23 |
+
|
24 |
+
|
25 |
+
https://github.com/langchain-ai/langchain/issues/6628#issuecomment-1935374689
|
main.py
CHANGED
@@ -10,39 +10,75 @@ from langchain_core.runnables import RunnablePassthrough
|
|
10 |
from langchain_core.documents import Document
|
11 |
from langchain_core.prompts import ChatPromptTemplate
|
12 |
from langchain_core.output_parsers import StrOutputParser
|
|
|
13 |
# from langchain_community.chains import
|
14 |
from langchain_community.chat_models import ChatOllama
|
15 |
from langchain_chroma import Chroma
|
16 |
from hugchat import hugchat
|
|
|
17 |
from hugchat.login import Login
|
18 |
import dotenv
|
19 |
from utils import HuggingChat
|
20 |
-
from
|
|
|
|
|
|
|
21 |
|
22 |
dotenv.load_dotenv()
|
23 |
|
24 |
|
25 |
class GradioApp:
|
26 |
def __init__(self):
|
|
|
|
|
27 |
# self.llm = ChatOllama(model="phi3:3.8b", base_url="http://localhost:11434", num_gpu=32)
|
28 |
|
29 |
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
-
|
37 |
-
Question: {question}
|
38 |
-
Answer:
|
39 |
|
40 |
-
|
41 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
self.llm = HuggingChat(email = os.getenv("HF_EMAIL") , psw = os.getenv("HF_PASS") )
|
43 |
-
self.chain = (
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
|
45 |
def user(self,user_message, history):
|
|
|
46 |
return "", history + [[user_message, None]]
|
47 |
|
48 |
def bot(self,history):
|
@@ -53,7 +89,8 @@ class GradioApp:
|
|
53 |
history[-1][1] += chunks
|
54 |
yield history
|
55 |
history[-1][1] = history[-1][1] or ""
|
56 |
-
history
|
|
|
57 |
print(history[-1][1])
|
58 |
print(history)
|
59 |
return history
|
|
|
10 |
from langchain_core.documents import Document
|
11 |
from langchain_core.prompts import ChatPromptTemplate
|
12 |
from langchain_core.output_parsers import StrOutputParser
|
13 |
+
|
14 |
# from langchain_community.chains import
|
15 |
from langchain_community.chat_models import ChatOllama
|
16 |
from langchain_chroma import Chroma
|
17 |
from hugchat import hugchat
|
18 |
+
# from langchain.callbacks import SystemMessage
|
19 |
from hugchat.login import Login
|
20 |
import dotenv
|
21 |
from utils import HuggingChat
|
22 |
+
from langchain_core.prompts import PromptTemplate
|
23 |
+
from langchain_community.embeddings import HuggingFaceEmbeddings
|
24 |
+
import langchain
|
25 |
+
langchain.debug = True
|
26 |
|
27 |
dotenv.load_dotenv()
|
28 |
|
29 |
|
30 |
class GradioApp:
|
31 |
def __init__(self):
|
32 |
+
|
33 |
+
self.history = []
|
34 |
# self.llm = ChatOllama(model="phi3:3.8b", base_url="http://localhost:11434", num_gpu=32)
|
35 |
|
36 |
|
37 |
+
# template = """
|
38 |
+
# You are a helpful health assistant. These Human will ask you a questions about their pregnancy health.
|
39 |
+
# Use following piece of context to answer the question.
|
40 |
+
# If you don't know the answer, just say you don't know.
|
41 |
+
# Keep the answer within 2 sentences and concise.
|
42 |
+
|
43 |
+
# Context: {context}
|
44 |
+
# Question: {question}
|
45 |
+
# Answer: """
|
46 |
+
|
47 |
+
|
48 |
+
self.template = """
|
49 |
+
You are a helpful AI bot that guides the customer or user through the website content and provides the user with exact details they want.
|
50 |
+
You help everyone by answering questions, and improve your answers from previous answers in History.
|
51 |
+
Don't try to make up an answer, if you don't know, just say that you don't know.
|
52 |
+
Answer in the same language the question was asked.
|
53 |
+
Answer in a way that is easy to understand.
|
54 |
+
Try to limit the answer to 3-4 sentences.
|
55 |
+
Do not say "Based on the information you provided, ..." or "I think the answer is...". Just answer the question directly in detail.
|
56 |
|
57 |
+
History: {chat_history}
|
|
|
|
|
58 |
|
59 |
+
Context: {context}
|
60 |
|
61 |
+
Question: {question}
|
62 |
+
Answer:
|
63 |
+
"""
|
64 |
+
self.prompt = PromptTemplate(
|
65 |
+
template=self.template,
|
66 |
+
input_variables=["chat_history","context", "question"]
|
67 |
+
)
|
68 |
+
self.db = Chroma(persist_directory="./pragetx_chroma", embedding_function=HuggingFaceEmbeddings())
|
69 |
self.llm = HuggingChat(email = os.getenv("HF_EMAIL") , psw = os.getenv("HF_PASS") )
|
70 |
+
self.chain = (
|
71 |
+
{"chat_history": self.chat_history, "context": self.db.as_retriever(k=1), "question": RunnablePassthrough()} |
|
72 |
+
self.prompt |
|
73 |
+
self.llm |
|
74 |
+
StrOutputParser())
|
75 |
+
def chat_history(self, history):
|
76 |
+
print(self.history)
|
77 |
+
print("\n".join(f"##Human: {x[0]}\n{'##Bot: '+x[1] if x[1] else ''}" for x in self.history))
|
78 |
+
return "\n".join(f"##Human: {x[0]}\n{'##Bot: '+x[1] if x[1] else ''}" for x in self.history)
|
79 |
|
80 |
def user(self,user_message, history):
|
81 |
+
self.history = history + [[user_message, None]]
|
82 |
return "", history + [[user_message, None]]
|
83 |
|
84 |
def bot(self,history):
|
|
|
89 |
history[-1][1] += chunks
|
90 |
yield history
|
91 |
history[-1][1] = history[-1][1] or ""
|
92 |
+
self.history = history
|
93 |
+
# history[-1][1] += self.chain.invoke(prompt)
|
94 |
print(history[-1][1])
|
95 |
print(history)
|
96 |
return history
|
setup.py
CHANGED
@@ -6,7 +6,7 @@ from langchain_community.embeddings import HuggingFaceEmbeddings
|
|
6 |
|
7 |
loader = TextLoader('./pragetx.md')
|
8 |
documents = loader.load()
|
9 |
-
text_splitter = CharacterTextSplitter(chunk_size=
|
10 |
docs = text_splitter.split_documents(documents)
|
11 |
|
12 |
embeddings = HuggingFaceEmbeddings()
|
|
|
6 |
|
7 |
loader = TextLoader('./pragetx.md')
|
8 |
documents = loader.load()
|
9 |
+
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=4)
|
10 |
docs = text_splitter.split_documents(documents)
|
11 |
|
12 |
embeddings = HuggingFaceEmbeddings()
|