from ctransformers import AutoModelForCausalLM from fastapi import FastAPI, Form from pydantic import BaseModel #Model loading llm1 = AutoModelForCausalLM.from_pretrained("zephyr-7b-beta.Q4_K_S.gguf", model_type='mistral', max_new_tokens = 1096, threads = 3, ) llm = AutoModelForCausalLM.from_pretrained("TheBloke/CodeLlama-7B-Instruct-GGUF", model_file="codellama-7b-instruct.q4_K_M.gguf", model_type="codellama", gpu_layers=0) #Pydantic object class validation(BaseModel): prompt: str #Fast API app = FastAPI() #Zephyr completion @app.post("/llm_on_cpu") async def stream(item: validation): system_prompt = 'Below is an instruction that describes a task. Write a response that appropriately completes the request.' E_INST = "" user, assistant = "<|user|>", "<|assistant|>" prompt = f"{system_prompt}{E_INST}\n{user}\n{item.prompt.strip()}{E_INST}\n{assistant}\n" return llm(prompt)