Spaces:
Runtime error
Runtime error
File size: 21,677 Bytes
d713b86 8c59545 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 |
from bartpho.preprocess import normalize, tokenize
from bartpho.utils import tag_dict, polarity_dict, polarity_list, tags, eng_tags, eng_polarity, detect_labels, no_polarity, no_tag
from bartpho.utils import predict, predict_df, predict_detect, predict_df_detect
from simpletransformers.config.model_args import Seq2SeqArgs
import random
import numpy as np
import torch
from transformers import (
AdamW,
AutoConfig,
AutoModel,
AutoTokenizer,
MBartConfig,
MBartForConditionalGeneration,
MBartTokenizer,
get_linear_schedule_with_warmup,
)
from pyvi.ViTokenizer import tokenize as model_tokenize
MODEL_CLASSES = {
"auto": (AutoConfig, AutoModel, AutoTokenizer),
#"mbart": (MBartConfig, MBartForConditionalGeneration, MBartTokenizer),
"bartpho": (MBartConfig, MBartForConditionalGeneration, AutoTokenizer)
}
class Seq2SeqModel:
def __init__(
self,
encoder_decoder_type=None,
encoder_decoder_name=None,
config=None,
args=None,
use_cuda=False,
cuda_device=0,
**kwargs,
):
"""
Initializes a Seq2SeqModel.
Args:
encoder_decoder_type (optional): The type of encoder-decoder model. (E.g. bart)
encoder_decoder_name (optional): The path to a directory containing the saved encoder and decoder of a Seq2SeqModel. (E.g. "outputs/") OR a valid BART or MarianMT model.
config (optional): A configuration file to build an EncoderDecoderModel.
args (optional): Default args will be used if this parameter is not provided. If provided, it should be a dict containing the args that should be changed in the default args.
use_cuda (optional): Use GPU if available. Setting to False will force model to use CPU only.
cuda_device (optional): Specific GPU that should be used. Will use the first available GPU by default.
**kwargs (optional): For providing proxies, force_download, resume_download, cache_dir and other options specific to the 'from_pretrained' implementation where this will be supplied.
""" # noqa: ignore flake8"
if not config:
# if not ((encoder_name and decoder_name) or encoder_decoder_name) and not encoder_type:
if not encoder_decoder_name:
raise ValueError(
"You must specify a Seq2Seq config \t OR \t"
"encoder_decoder_name"
)
elif not encoder_decoder_type:
raise ValueError(
"You must specify a Seq2Seq config \t OR \t"
"encoder_decoder_name"
)
self.args = self._load_model_args(encoder_decoder_name)
print(args)
if args:
self.args.update_from_dict(args)
print(args)
if self.args.manual_seed:
random.seed(self.args.manual_seed)
np.random.seed(self.args.manual_seed)
torch.manual_seed(self.args.manual_seed)
if self.args.n_gpu > 0:
torch.cuda.manual_seed_all(self.args.manual_seed)
if use_cuda:
if torch.cuda.is_available():
self.device = torch.device("cuda")
else:
raise ValueError(
"'use_cuda' set to True when cuda is unavailable."
"Make sure CUDA is available or set `use_cuda=False`."
)
else:
self.device = "cpu"
self.results = {}
if not use_cuda:
self.args.fp16 = False
# config = EncoderDecoderConfig.from_encoder_decoder_configs(config, config)
#if encoder_decoder_type:
config_class, model_class, tokenizer_class = MODEL_CLASSES[encoder_decoder_type]
self.model = model_class.from_pretrained(encoder_decoder_name)
self.encoder_tokenizer = tokenizer_class.from_pretrained(encoder_decoder_name)
self.decoder_tokenizer = self.encoder_tokenizer
self.config = self.model.config
if self.args.wandb_project and not wandb_available:
warnings.warn("wandb_project specified but wandb is not available. Wandb disabled.")
self.args.wandb_project = None
self.args.model_name = encoder_decoder_name
self.args.model_type = encoder_decoder_type
def train_model(
self,
train_data,
best_accuracy,
output_dir=None,
show_running_loss=True,
args=None,
eval_data=None,
test_data=None,
verbose=True,
**kwargs,
):
if args:
self.args.update_from_dict(args)
#self.args = args
if self.args.silent:
show_running_loss = False
if not output_dir:
output_dir = self.args.output_dir
self._move_model_to_device()
train_dataset = self.load_and_cache_examples(train_data, verbose=verbose)
os.makedirs(output_dir, exist_ok=True)
global_step, tr_loss, best_accuracy = self.train(
train_dataset,
output_dir,
best_accuracy,
show_running_loss=show_running_loss,
eval_data=eval_data,
test_data=test_data,
verbose=verbose,
**kwargs,
)
final_dir = self.args.output_dir + "/final"
self._save_model(final_dir, model=self.model)
if verbose:
logger.info(" Training of {} model complete. Saved best to {}.".format(self.args.model_name, final_dir))
return best_accuracy
def train(
self,
train_dataset,
output_dir,
best_accuracy,
show_running_loss=True,
eval_data=None,
test_data=None,
verbose=True,
**kwargs,
):
"""
Trains the model on train_dataset.
Utility function to be used by the train_model() method. Not intended to be used directly.
"""
#epoch_lst = []
#acc_detects, pre_detects, rec_detects, f1_detects, accs, pre_absas, rec_absas, f1_absas = [], [], [], [], [], [], [], []
#tacc_detects, tpre_detects, trec_detects, tf1_detects, taccs, tpre_absas, trec_absas, tf1_absas = [], [], [], [], [], [], [], []
model = self.model
args = self.args
tb_writer = SummaryWriter(logdir=args.tensorboard_dir)
train_sampler = RandomSampler(train_dataset)
train_dataloader = DataLoader(
train_dataset,
sampler=train_sampler,
batch_size=args.train_batch_size,
num_workers=self.args.dataloader_num_workers,
)
if args.max_steps > 0:
t_total = args.max_steps
args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1
else:
t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs
no_decay = ["bias", "LayerNorm.weight"]
optimizer_grouped_parameters = []
custom_parameter_names = set()
for group in self.args.custom_parameter_groups:
params = group.pop("params")
custom_parameter_names.update(params)
param_group = {**group}
param_group["params"] = [p for n, p in model.named_parameters() if n in params]
optimizer_grouped_parameters.append(param_group)
for group in self.args.custom_layer_parameters:
layer_number = group.pop("layer")
layer = f"layer.{layer_number}."
group_d = {**group}
group_nd = {**group}
group_nd["weight_decay"] = 0.0
params_d = []
params_nd = []
for n, p in model.named_parameters():
if n not in custom_parameter_names and layer in n:
if any(nd in n for nd in no_decay):
params_nd.append(p)
else:
params_d.append(p)
custom_parameter_names.add(n)
group_d["params"] = params_d
group_nd["params"] = params_nd
optimizer_grouped_parameters.append(group_d)
optimizer_grouped_parameters.append(group_nd)
if not self.args.train_custom_parameters_only:
optimizer_grouped_parameters.extend(
[
{
"params": [
p
for n, p in model.named_parameters()
if n not in custom_parameter_names and not any(nd in n for nd in no_decay)
],
"weight_decay": args.weight_decay,
},
{
"params": [
p
for n, p in model.named_parameters()
if n not in custom_parameter_names and any(nd in n for nd in no_decay)
],
"weight_decay": 0.0,
},
]
)
warmup_steps = math.ceil(t_total * args.warmup_ratio)
args.warmup_steps = warmup_steps if args.warmup_steps == 0 else args.warmup_steps
# TODO: Use custom optimizer like with BertSum?
optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
scheduler = get_linear_schedule_with_warmup(
optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=t_total
)
if (args.model_name and os.path.isfile(os.path.join(args.model_name, "optimizer.pt")) and os.path.isfile(os.path.join(args.model_name, "scheduler.pt"))):
# Load in optimizer and scheduler states
optimizer.load_state_dict(torch.load(os.path.join(args.model_name, "optimizer.pt")))
scheduler.load_state_dict(torch.load(os.path.join(args.model_name, "scheduler.pt")))
if args.n_gpu > 1:
model = torch.nn.DataParallel(model)
logger.info(" Training started")
global_step = 0
tr_loss, logging_loss = 0.0, 0.0
model.zero_grad()
train_iterator = trange(int(args.num_train_epochs), desc="Epoch", disable=args.silent, mininterval=0)
epoch_number = 0
best_eval_metric = None
early_stopping_counter = 0
steps_trained_in_current_epoch = 0
epochs_trained = 0
if args.model_name and os.path.exists(args.model_name):
try:
# set global_step to gobal_step of last saved checkpoint from model path
checkpoint_suffix = args.model_name.split("/")[-1].split("-")
if len(checkpoint_suffix) > 2:
checkpoint_suffix = checkpoint_suffix[1]
else:
checkpoint_suffix = checkpoint_suffix[-1]
global_step = int(checkpoint_suffix)
epochs_trained = global_step // (len(train_dataloader) // args.gradient_accumulation_steps)
steps_trained_in_current_epoch = global_step % (
len(train_dataloader) // args.gradient_accumulation_steps
)
logger.info(" Continuing training from checkpoint, will skip to saved global_step")
logger.info(" Continuing training from epoch %d", epochs_trained)
logger.info(" Continuing training from global step %d", global_step)
logger.info(" Will skip the first %d steps in the current epoch", steps_trained_in_current_epoch)
except ValueError:
logger.info(" Starting fine-tuning.")
if args.wandb_project:
wandb.init(project=args.wandb_project, config={**asdict(args)}, **args.wandb_kwargs)
wandb.watch(self.model)
if args.fp16:
from torch.cuda import amp
scaler = amp.GradScaler()
model.train()
for current_epoch in train_iterator:
if epochs_trained > 0:
epochs_trained -= 1
continue
train_iterator.set_description(f"Epoch {epoch_number + 1} of {args.num_train_epochs}")
batch_iterator = tqdm(
train_dataloader,
desc=f"Running Epoch {epoch_number} of {args.num_train_epochs}",
disable=args.silent,
mininterval=0,
)
for step, batch in enumerate(batch_iterator):
if steps_trained_in_current_epoch > 0:
steps_trained_in_current_epoch -= 1
continue
# batch = tuple(t.to(device) for t in batch)
inputs = self._get_inputs_dict(batch)
if args.fp16:
with amp.autocast():
outputs = model(**inputs)
# model outputs are always tuple in pytorch-transformers (see doc)
loss = outputs[0]
else:
outputs = model(**inputs)
# model outputs are always tuple in pytorch-transformers (see doc)
loss = outputs[0]
if args.n_gpu > 1:
loss = loss.mean() # mean() to average on multi-gpu parallel training
current_loss = loss.item()
if show_running_loss:
batch_iterator.set_description(
f"Epochs {epoch_number}/{args.num_train_epochs}. Running Loss: {current_loss:9.4f}"
)
if args.gradient_accumulation_steps > 1:
loss = loss / args.gradient_accumulation_steps
if args.fp16:
scaler.scale(loss).backward()
else:
loss.backward()
tr_loss += loss.item()
if (step + 1) % args.gradient_accumulation_steps == 0:
if args.fp16:
scaler.unscale_(optimizer)
torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)
if args.fp16:
scaler.step(optimizer)
scaler.update()
else:
optimizer.step()
scheduler.step() # Update learning rate schedule
model.zero_grad()
global_step += 1
if args.logging_steps > 0 and global_step % args.logging_steps == 0:
# Log metrics
tb_writer.add_scalar("lr", scheduler.get_lr()[0], global_step)
tb_writer.add_scalar("loss", (tr_loss - logging_loss) / args.logging_steps, global_step)
logging_loss = tr_loss
if args.wandb_project:
wandb.log(
{
"Training loss": current_loss,
"lr": scheduler.get_lr()[0],
"global_step": global_step,
}
)
# if args.save_steps > 0 and global_step % args.save_steps == 0:
# # Save model checkpoint
# output_dir_current = os.path.join(output_dir, "checkpoint-{}".format(global_step))
# self._save_model(output_dir_current, optimizer, scheduler, model=model)
epoch_number += 1
output_dir_current = os.path.join(output_dir, "checkpoint-{}-epoch-{}".format(global_step, epoch_number))
print('batch: '+str(args.train_batch_size)+' accumulation_steps: '+str(args.gradient_accumulation_steps)+\
' lr: '+str(args.learning_rate)+' epochs: '+str(args.num_train_epochs)+' epoch: '+str(epoch_number))
print('---dev dataset----')
acc_detect, pre_detect, rec_detect, f1_detect, acc, pre_absa, rec_absa, f1_absa = predict_df(model, eval_data, tokenizer=self.encoder_tokenizer, device=self.device)
print('---test dataset----')
tacc_detect, tpre_detect, trec_detect, tf1_detect, tacc, tpre_absa, trec_absa, tf1_absa = predict_df(model, test_data, tokenizer=self.encoder_tokenizer, device=self.device)
# if acc > best_accuracy:
# best_accuracy = acc
# if not args.save_model_every_epoch:
# self._save_model(output_dir_current, optimizer, scheduler, model=model)
# with open('./MAMS_best_accuracy.txt', 'a') as f0:
# f0.writelines('batch: '+str(args.train_batch_size)+' accumulation_steps: '+str(args.gradient_accumulation_steps)+\
# ' lr: '+str(args.learning_rate)+' epochs: '+str(args.num_train_epochs)+' epoch: '+str(epoch_number)+' val_accuracy: '+str(best_accuracy)+\
# ' test_accuracy: '+str(tacc)+'\n')
# if args.save_model_every_epoch:
# os.makedirs(output_dir_current, exist_ok=True)
# self._save_model(output_dir_current, optimizer, scheduler, model=model)
if acc > best_accuracy:
# Cập nhật best_accuracy nếu tìm thấy mô hình tốt hơn
best_accuracy = acc
# Lưu mô hình tốt nhất vào output_dir_current
self._save_model(output_dir_current, optimizer, scheduler, model=model)
# Ghi lại thông tin về best_accuracy vào file log
with open('./MAMS_best_accuracy.txt', 'a') as f0:
f0.writelines(
'batch: ' + str(args.train_batch_size) +
' accumulation_steps: ' + str(args.gradient_accumulation_steps) +
' lr: ' + str(args.learning_rate) +
' epochs: ' + str(args.num_train_epochs) +
' epoch: ' + str(epoch_number) +
' val_accuracy: ' + str(best_accuracy) +
' test_accuracy: ' + str(tacc) + '\n'
)
return global_step, tr_loss / global_step, best_accuracy
def load_and_cache_examples(self, data, evaluate=False, no_cache=False, verbose=True, silent=False):
"""
Creates a T5Dataset from data.
Utility function for train() and eval() methods. Not intended to be used directly.
"""
encoder_tokenizer = self.encoder_tokenizer
decoder_tokenizer = self.decoder_tokenizer
args = self.args
if not no_cache:
no_cache = args.no_cache
if not no_cache:
os.makedirs(self.args.cache_dir, exist_ok=True)
mode = "dev" if evaluate else "train"
if args.dataset_class:
CustomDataset = args.dataset_class
return CustomDataset(encoder_tokenizer, decoder_tokenizer, args, data, mode)
else:
return SimpleSummarizationDataset(encoder_tokenizer, self.args, data, mode)
def _save_model(self, output_dir=None, optimizer=None, scheduler=None, model=None, results=None):
if not output_dir:
output_dir = self.args.output_dir
os.makedirs(output_dir, exist_ok=True)
logger.info(f"Saving model into {output_dir}")
if model and not self.args.no_save:
# Take care of distributed/parallel training
model_to_save = model.module if hasattr(model, "module") else model
self._save_model_args(output_dir)
os.makedirs(os.path.join(output_dir), exist_ok=True)
model_to_save.save_pretrained(output_dir)
self.config.save_pretrained(output_dir)
self.encoder_tokenizer.save_pretrained(output_dir)
torch.save(self.args, os.path.join(output_dir, "training_args.bin"))
if optimizer and scheduler and self.args.save_optimizer_and_scheduler:
torch.save(optimizer.state_dict(), os.path.join(output_dir, "optimizer.pt"))
torch.save(scheduler.state_dict(), os.path.join(output_dir, "scheduler.pt"))
if results:
output_eval_file = os.path.join(output_dir, "eval_results.txt")
with open(output_eval_file, "w") as writer:
for key in sorted(results.keys()):
writer.write("{} = {}\n".format(key, str(results[key])))
def _move_model_to_device(self):
self.model.to(self.device)
def _get_inputs_dict(self, batch):
device = self.device
pad_token_id = self.encoder_tokenizer.pad_token_id
source_ids, source_mask, y = batch["source_ids"], batch["source_mask"], batch["target_ids"]
y_ids = y[:, :-1].contiguous()
lm_labels = y[:, 1:].clone()
lm_labels[y[:, 1:] == pad_token_id] = -100
inputs = {
"input_ids": source_ids.to(device),
"attention_mask": source_mask.to(device),
"decoder_input_ids": y_ids.to(device),
"labels": lm_labels.to(device),
}
return inputs
def _save_model_args(self, output_dir):
os.makedirs(output_dir, exist_ok=True)
self.args.save(output_dir)
def _load_model_args(self, input_dir):
args = Seq2SeqArgs()
args.load(input_dir)
return args
def get_named_parameters(self):
return [n for n, p in self.model.named_parameters()] |