File size: 21,677 Bytes
d713b86
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8c59545
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
from bartpho.preprocess import normalize, tokenize
from bartpho.utils import tag_dict, polarity_dict, polarity_list, tags, eng_tags, eng_polarity, detect_labels, no_polarity, no_tag
from bartpho.utils import predict, predict_df, predict_detect, predict_df_detect
from simpletransformers.config.model_args import Seq2SeqArgs
import random
import numpy as np
import torch
from transformers import (
    AdamW,
    AutoConfig,
    AutoModel,
    AutoTokenizer,
    MBartConfig,
    MBartForConditionalGeneration,
    MBartTokenizer,
    get_linear_schedule_with_warmup,
)
from pyvi.ViTokenizer import tokenize as model_tokenize

MODEL_CLASSES = {
    "auto": (AutoConfig, AutoModel, AutoTokenizer),
    #"mbart": (MBartConfig, MBartForConditionalGeneration, MBartTokenizer),
    "bartpho": (MBartConfig, MBartForConditionalGeneration, AutoTokenizer)
}

class Seq2SeqModel:
    def __init__(
        self,
        encoder_decoder_type=None,
        encoder_decoder_name=None,
        config=None,
        args=None,
        use_cuda=False,
        cuda_device=0,
        **kwargs,
    ):

        """
        Initializes a Seq2SeqModel.

        Args:
            encoder_decoder_type (optional): The type of encoder-decoder model. (E.g. bart)
            encoder_decoder_name (optional): The path to a directory containing the saved encoder and decoder of a Seq2SeqModel. (E.g. "outputs/") OR a valid BART or MarianMT model.
            config (optional): A configuration file to build an EncoderDecoderModel.
            args (optional): Default args will be used if this parameter is not provided. If provided, it should be a dict containing the args that should be changed in the default args.
            use_cuda (optional): Use GPU if available. Setting to False will force model to use CPU only.
            cuda_device (optional): Specific GPU that should be used. Will use the first available GPU by default.
            **kwargs (optional): For providing proxies, force_download, resume_download, cache_dir and other options specific to the 'from_pretrained' implementation where this will be supplied.
        """  # noqa: ignore flake8"

        if not config:
            # if not ((encoder_name and decoder_name) or encoder_decoder_name) and not encoder_type:
            if not encoder_decoder_name:
                raise ValueError(
                    "You must specify a Seq2Seq config \t OR \t"
                    "encoder_decoder_name"
                )
            elif not encoder_decoder_type:
                raise ValueError(
                    "You must specify a Seq2Seq config \t OR \t"
                    "encoder_decoder_name"
                )

        self.args = self._load_model_args(encoder_decoder_name)
        print(args)
        if args:
            self.args.update_from_dict(args)
            print(args)

        if self.args.manual_seed:
            random.seed(self.args.manual_seed)
            np.random.seed(self.args.manual_seed)
            torch.manual_seed(self.args.manual_seed)
            if self.args.n_gpu > 0:
                torch.cuda.manual_seed_all(self.args.manual_seed)

        if use_cuda:
            if torch.cuda.is_available():
                    self.device = torch.device("cuda")
            else:
                raise ValueError(
                    "'use_cuda' set to True when cuda is unavailable."
                    "Make sure CUDA is available or set `use_cuda=False`."
                )
        else:
            self.device = "cpu"

        self.results = {}

        if not use_cuda:
            self.args.fp16 = False

        # config = EncoderDecoderConfig.from_encoder_decoder_configs(config, config)
        #if encoder_decoder_type:
        config_class, model_class, tokenizer_class = MODEL_CLASSES[encoder_decoder_type]

        self.model = model_class.from_pretrained(encoder_decoder_name)
        self.encoder_tokenizer = tokenizer_class.from_pretrained(encoder_decoder_name)
        self.decoder_tokenizer = self.encoder_tokenizer
        self.config = self.model.config

        if self.args.wandb_project and not wandb_available:
            warnings.warn("wandb_project specified but wandb is not available. Wandb disabled.")
            self.args.wandb_project = None

        self.args.model_name = encoder_decoder_name
        self.args.model_type = encoder_decoder_type

    def train_model(
        self,
        train_data,
        best_accuracy,
        output_dir=None,
        show_running_loss=True,
        args=None,
        eval_data=None,
        test_data=None,
        verbose=True,
        **kwargs,
    ):
        if args:
            self.args.update_from_dict(args)
        #self.args = args
        if self.args.silent:
            show_running_loss = False


        if not output_dir:
            output_dir = self.args.output_dir
        self._move_model_to_device()

        train_dataset = self.load_and_cache_examples(train_data, verbose=verbose)

        os.makedirs(output_dir, exist_ok=True)

        global_step, tr_loss, best_accuracy = self.train(
            train_dataset,
            output_dir,
            best_accuracy,
            show_running_loss=show_running_loss,
            eval_data=eval_data,
            test_data=test_data,
            verbose=verbose,
            **kwargs,
        )

        final_dir = self.args.output_dir + "/final"
        self._save_model(final_dir, model=self.model)

        if verbose:
            logger.info(" Training of {} model complete. Saved best to {}.".format(self.args.model_name, final_dir))

        return best_accuracy

    def train(
        self, 
        train_dataset, 
        output_dir, 
        best_accuracy, 
        show_running_loss=True, 
        eval_data=None, 
        test_data=None,
        verbose=True, 
        **kwargs,
    ):
        """
        Trains the model on train_dataset.

        Utility function to be used by the train_model() method. Not intended to be used directly.
        """
        
        #epoch_lst = []
        #acc_detects, pre_detects, rec_detects, f1_detects, accs, pre_absas, rec_absas, f1_absas = [], [], [], [], [], [], [], []
        #tacc_detects, tpre_detects, trec_detects, tf1_detects, taccs, tpre_absas, trec_absas, tf1_absas = [], [], [], [], [], [], [], []

        model = self.model
        args = self.args

        tb_writer = SummaryWriter(logdir=args.tensorboard_dir)
        train_sampler = RandomSampler(train_dataset)
        train_dataloader = DataLoader(
            train_dataset,
            sampler=train_sampler,
            batch_size=args.train_batch_size,
            num_workers=self.args.dataloader_num_workers,
        )

        if args.max_steps > 0:
            t_total = args.max_steps
            args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1
        else:
            t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs

        no_decay = ["bias", "LayerNorm.weight"]

        optimizer_grouped_parameters = []
        custom_parameter_names = set()
        for group in self.args.custom_parameter_groups:
            params = group.pop("params")
            custom_parameter_names.update(params)
            param_group = {**group}
            param_group["params"] = [p for n, p in model.named_parameters() if n in params]
            optimizer_grouped_parameters.append(param_group)

        for group in self.args.custom_layer_parameters:
            layer_number = group.pop("layer")
            layer = f"layer.{layer_number}."
            group_d = {**group}
            group_nd = {**group}
            group_nd["weight_decay"] = 0.0
            params_d = []
            params_nd = []
            for n, p in model.named_parameters():
                if n not in custom_parameter_names and layer in n:
                    if any(nd in n for nd in no_decay):
                        params_nd.append(p)
                    else:
                        params_d.append(p)
                    custom_parameter_names.add(n)
            group_d["params"] = params_d
            group_nd["params"] = params_nd

            optimizer_grouped_parameters.append(group_d)
            optimizer_grouped_parameters.append(group_nd)

        if not self.args.train_custom_parameters_only:
            optimizer_grouped_parameters.extend(
                [
                    {
                        "params": [
                            p
                            for n, p in model.named_parameters()
                            if n not in custom_parameter_names and not any(nd in n for nd in no_decay)
                        ],
                        "weight_decay": args.weight_decay,
                    },
                    {
                        "params": [
                            p
                            for n, p in model.named_parameters()
                            if n not in custom_parameter_names and any(nd in n for nd in no_decay)
                        ],
                        "weight_decay": 0.0,
                    },
                ]
            )

        warmup_steps = math.ceil(t_total * args.warmup_ratio)
        args.warmup_steps = warmup_steps if args.warmup_steps == 0 else args.warmup_steps

        # TODO: Use custom optimizer like with BertSum?
        optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
        scheduler = get_linear_schedule_with_warmup(
            optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=t_total
        )

        if (args.model_name and os.path.isfile(os.path.join(args.model_name, "optimizer.pt")) and os.path.isfile(os.path.join(args.model_name, "scheduler.pt"))):
            # Load in optimizer and scheduler states
            optimizer.load_state_dict(torch.load(os.path.join(args.model_name, "optimizer.pt")))
            scheduler.load_state_dict(torch.load(os.path.join(args.model_name, "scheduler.pt")))

        if args.n_gpu > 1:
            model = torch.nn.DataParallel(model)

        logger.info(" Training started")

        global_step = 0
        tr_loss, logging_loss = 0.0, 0.0
        model.zero_grad()
        train_iterator = trange(int(args.num_train_epochs), desc="Epoch", disable=args.silent, mininterval=0)
        epoch_number = 0
        best_eval_metric = None
        early_stopping_counter = 0
        steps_trained_in_current_epoch = 0
        epochs_trained = 0

        if args.model_name and os.path.exists(args.model_name):
            try:
                # set global_step to gobal_step of last saved checkpoint from model path
                checkpoint_suffix = args.model_name.split("/")[-1].split("-")
                if len(checkpoint_suffix) > 2:
                    checkpoint_suffix = checkpoint_suffix[1]
                else:
                    checkpoint_suffix = checkpoint_suffix[-1]
                global_step = int(checkpoint_suffix)
                epochs_trained = global_step // (len(train_dataloader) // args.gradient_accumulation_steps)
                steps_trained_in_current_epoch = global_step % (
                    len(train_dataloader) // args.gradient_accumulation_steps
                )

                logger.info("   Continuing training from checkpoint, will skip to saved global_step")
                logger.info("   Continuing training from epoch %d", epochs_trained)
                logger.info("   Continuing training from global step %d", global_step)
                logger.info("   Will skip the first %d steps in the current epoch", steps_trained_in_current_epoch)
            except ValueError:
                logger.info("   Starting fine-tuning.")

        if args.wandb_project:
            wandb.init(project=args.wandb_project, config={**asdict(args)}, **args.wandb_kwargs)
            wandb.watch(self.model)

        if args.fp16:
            from torch.cuda import amp

            scaler = amp.GradScaler()

        model.train()
        for current_epoch in train_iterator:
            if epochs_trained > 0:
                epochs_trained -= 1
                continue
            train_iterator.set_description(f"Epoch {epoch_number + 1} of {args.num_train_epochs}")
            batch_iterator = tqdm(
                train_dataloader,
                desc=f"Running Epoch {epoch_number} of {args.num_train_epochs}",
                disable=args.silent,
                mininterval=0,
            )
            for step, batch in enumerate(batch_iterator):
                if steps_trained_in_current_epoch > 0:
                    steps_trained_in_current_epoch -= 1
                    continue
                # batch = tuple(t.to(device) for t in batch)

                inputs = self._get_inputs_dict(batch)
                if args.fp16:
                    with amp.autocast():
                        outputs = model(**inputs)
                        # model outputs are always tuple in pytorch-transformers (see doc)
                        loss = outputs[0]
                else:
                    outputs = model(**inputs)
                    # model outputs are always tuple in pytorch-transformers (see doc)
                    loss = outputs[0]

                if args.n_gpu > 1:
                    loss = loss.mean()  # mean() to average on multi-gpu parallel training

                current_loss = loss.item()

                if show_running_loss:
                    batch_iterator.set_description(
                        f"Epochs {epoch_number}/{args.num_train_epochs}. Running Loss: {current_loss:9.4f}"
                    )

                if args.gradient_accumulation_steps > 1:
                    loss = loss / args.gradient_accumulation_steps

                if args.fp16:
                    scaler.scale(loss).backward()
                else:
                    loss.backward()

                tr_loss += loss.item()
                if (step + 1) % args.gradient_accumulation_steps == 0:
                    if args.fp16:
                        scaler.unscale_(optimizer)
                    torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)

                    if args.fp16:
                        scaler.step(optimizer)
                        scaler.update()
                    else:
                        optimizer.step()
                    scheduler.step()  # Update learning rate schedule
                    model.zero_grad()
                    global_step += 1

                    if args.logging_steps > 0 and global_step % args.logging_steps == 0:
                        # Log metrics
                        tb_writer.add_scalar("lr", scheduler.get_lr()[0], global_step)
                        tb_writer.add_scalar("loss", (tr_loss - logging_loss) / args.logging_steps, global_step)
                        logging_loss = tr_loss
                        if args.wandb_project:
                            wandb.log(
                                {
                                    "Training loss": current_loss,
                                    "lr": scheduler.get_lr()[0],
                                    "global_step": global_step,
                                }
                            )

                    # if args.save_steps > 0 and global_step % args.save_steps == 0:
                    #     # Save model checkpoint
                    #     output_dir_current = os.path.join(output_dir, "checkpoint-{}".format(global_step))

                    #     self._save_model(output_dir_current, optimizer, scheduler, model=model)

            epoch_number += 1
            output_dir_current = os.path.join(output_dir, "checkpoint-{}-epoch-{}".format(global_step, epoch_number))

            
            print('batch: '+str(args.train_batch_size)+' accumulation_steps: '+str(args.gradient_accumulation_steps)+\
                ' lr: '+str(args.learning_rate)+' epochs: '+str(args.num_train_epochs)+' epoch: '+str(epoch_number))
            print('---dev dataset----')
            acc_detect, pre_detect, rec_detect, f1_detect, acc, pre_absa, rec_absa, f1_absa = predict_df(model, eval_data, tokenizer=self.encoder_tokenizer, device=self.device)
            print('---test dataset----')
            tacc_detect, tpre_detect, trec_detect, tf1_detect, tacc, tpre_absa, trec_absa, tf1_absa = predict_df(model, test_data, tokenizer=self.encoder_tokenizer, device=self.device)
            # if acc > best_accuracy:
            #     best_accuracy = acc
            #     if not args.save_model_every_epoch:
            #         self._save_model(output_dir_current, optimizer, scheduler, model=model)
            #     with open('./MAMS_best_accuracy.txt', 'a') as f0:
            #         f0.writelines('batch: '+str(args.train_batch_size)+' accumulation_steps: '+str(args.gradient_accumulation_steps)+\
            #                       ' lr: '+str(args.learning_rate)+' epochs: '+str(args.num_train_epochs)+' epoch: '+str(epoch_number)+' val_accuracy: '+str(best_accuracy)+\
            #                       ' test_accuracy: '+str(tacc)+'\n')             

            # if args.save_model_every_epoch:
            #     os.makedirs(output_dir_current, exist_ok=True)
            #     self._save_model(output_dir_current, optimizer, scheduler, model=model)

            if acc > best_accuracy:
    # Cập nhật best_accuracy nếu tìm thấy mô hình tốt hơn
                best_accuracy = acc
    
    # Lưu mô hình tốt nhất vào output_dir_current
                self._save_model(output_dir_current, optimizer, scheduler, model=model)

    # Ghi lại thông tin về best_accuracy vào file log
                with open('./MAMS_best_accuracy.txt', 'a') as f0:
                    f0.writelines(
                        'batch: ' + str(args.train_batch_size) +
                        ' accumulation_steps: ' + str(args.gradient_accumulation_steps) +
                        ' lr: ' + str(args.learning_rate) +
                        ' epochs: ' + str(args.num_train_epochs) +
                        ' epoch: ' + str(epoch_number) +
                        ' val_accuracy: ' + str(best_accuracy) +
                        ' test_accuracy: ' + str(tacc) + '\n'
                    )

        

        return global_step, tr_loss / global_step, best_accuracy    

    def load_and_cache_examples(self, data, evaluate=False, no_cache=False, verbose=True, silent=False):
        """
        Creates a T5Dataset from data.

        Utility function for train() and eval() methods. Not intended to be used directly.
        """

        encoder_tokenizer = self.encoder_tokenizer
        decoder_tokenizer = self.decoder_tokenizer
        args = self.args

        if not no_cache:
            no_cache = args.no_cache

        if not no_cache:
            os.makedirs(self.args.cache_dir, exist_ok=True)

        mode = "dev" if evaluate else "train"

        if args.dataset_class:
            CustomDataset = args.dataset_class
            return CustomDataset(encoder_tokenizer, decoder_tokenizer, args, data, mode)
        else:
            return SimpleSummarizationDataset(encoder_tokenizer, self.args, data, mode)

    def _save_model(self, output_dir=None, optimizer=None, scheduler=None, model=None, results=None):
        if not output_dir:
            output_dir = self.args.output_dir
        os.makedirs(output_dir, exist_ok=True)

        logger.info(f"Saving model into {output_dir}")

        if model and not self.args.no_save:
            # Take care of distributed/parallel training
            model_to_save = model.module if hasattr(model, "module") else model
            self._save_model_args(output_dir)

            os.makedirs(os.path.join(output_dir), exist_ok=True)
            model_to_save.save_pretrained(output_dir)
            self.config.save_pretrained(output_dir)
            self.encoder_tokenizer.save_pretrained(output_dir)

            torch.save(self.args, os.path.join(output_dir, "training_args.bin"))
            if optimizer and scheduler and self.args.save_optimizer_and_scheduler:
                torch.save(optimizer.state_dict(), os.path.join(output_dir, "optimizer.pt"))
                torch.save(scheduler.state_dict(), os.path.join(output_dir, "scheduler.pt"))

        if results:
            output_eval_file = os.path.join(output_dir, "eval_results.txt")
            with open(output_eval_file, "w") as writer:
                for key in sorted(results.keys()):
                    writer.write("{} = {}\n".format(key, str(results[key])))

    def _move_model_to_device(self):
        self.model.to(self.device)

    def _get_inputs_dict(self, batch):
        device = self.device
        pad_token_id = self.encoder_tokenizer.pad_token_id
        source_ids, source_mask, y = batch["source_ids"], batch["source_mask"], batch["target_ids"]
        y_ids = y[:, :-1].contiguous()
        lm_labels = y[:, 1:].clone()
        lm_labels[y[:, 1:] == pad_token_id] = -100

        inputs = {
            "input_ids": source_ids.to(device),
            "attention_mask": source_mask.to(device),
            "decoder_input_ids": y_ids.to(device),
            "labels": lm_labels.to(device),
        }
        return inputs

    def _save_model_args(self, output_dir):
        os.makedirs(output_dir, exist_ok=True)
        self.args.save(output_dir)

    def _load_model_args(self, input_dir):
        args = Seq2SeqArgs()
        args.load(input_dir)
        return args

    def get_named_parameters(self):
        return [n for n, p in self.model.named_parameters()]