demo-asbvn / model /model.py
hHoai's picture
model_seq
8c59545 verified
raw
history blame
22 kB
from bartpho.preprocess import normalize, tokenize
from bartpho.utils import tag_dict, polarity_dict, polarity_list, tags, eng_tags, eng_polarity, detect_labels, no_polarity, no_tag
from bartpho.utils import predict, predict_df, predict_detect, predict_df_detect
from simpletransformers.config.model_args import Seq2SeqArgs
import random
import numpy as np
import torch
from transformers import (
AdamW,
AutoConfig,
AutoModel,
AutoTokenizer,
MBartConfig,
MBartForConditionalGeneration,
MBartTokenizer,
get_linear_schedule_with_warmup,
)
from pyvi.ViTokenizer import tokenize as model_tokenize
class Seq2SeqModel:
def __init__(
self,
encoder_decoder_type=None,
encoder_decoder_name=None,
config=None,
args=None,
use_cuda=False,
cuda_device=0,
**kwargs,
):
"""
Initializes a Seq2SeqModel.
Args:
encoder_decoder_type (optional): The type of encoder-decoder model. (E.g. bart)
encoder_decoder_name (optional): The path to a directory containing the saved encoder and decoder of a Seq2SeqModel. (E.g. "outputs/") OR a valid BART or MarianMT model.
config (optional): A configuration file to build an EncoderDecoderModel.
args (optional): Default args will be used if this parameter is not provided. If provided, it should be a dict containing the args that should be changed in the default args.
use_cuda (optional): Use GPU if available. Setting to False will force model to use CPU only.
cuda_device (optional): Specific GPU that should be used. Will use the first available GPU by default.
**kwargs (optional): For providing proxies, force_download, resume_download, cache_dir and other options specific to the 'from_pretrained' implementation where this will be supplied.
""" # noqa: ignore flake8"
if not config:
# if not ((encoder_name and decoder_name) or encoder_decoder_name) and not encoder_type:
if not encoder_decoder_name:
raise ValueError(
"You must specify a Seq2Seq config \t OR \t"
"encoder_decoder_name"
)
elif not encoder_decoder_type:
raise ValueError(
"You must specify a Seq2Seq config \t OR \t"
"encoder_decoder_name"
)
self.args = self._load_model_args(encoder_decoder_name)
print(args)
if args:
self.args.update_from_dict(args)
print(args)
if self.args.manual_seed:
random.seed(self.args.manual_seed)
np.random.seed(self.args.manual_seed)
torch.manual_seed(self.args.manual_seed)
if self.args.n_gpu > 0:
torch.cuda.manual_seed_all(self.args.manual_seed)
if use_cuda:
if torch.cuda.is_available():
self.device = torch.device("cuda")
else:
raise ValueError(
"'use_cuda' set to True when cuda is unavailable."
"Make sure CUDA is available or set `use_cuda=False`."
)
else:
self.device = "cpu"
self.results = {}
if not use_cuda:
self.args.fp16 = False
# config = EncoderDecoderConfig.from_encoder_decoder_configs(config, config)
#if encoder_decoder_type:
config_class, model_class, tokenizer_class = MODEL_CLASSES[encoder_decoder_type]
self.model = model_class.from_pretrained(encoder_decoder_name)
self.encoder_tokenizer = tokenizer_class.from_pretrained(encoder_decoder_name)
self.decoder_tokenizer = self.encoder_tokenizer
self.config = self.model.config
if self.args.wandb_project and not wandb_available:
warnings.warn("wandb_project specified but wandb is not available. Wandb disabled.")
self.args.wandb_project = None
self.args.model_name = encoder_decoder_name
self.args.model_type = encoder_decoder_type
def train_model(
self,
train_data,
best_accuracy,
output_dir=None,
show_running_loss=True,
args=None,
eval_data=None,
test_data=None,
verbose=True,
**kwargs,
):
if args:
self.args.update_from_dict(args)
#self.args = args
if self.args.silent:
show_running_loss = False
if not output_dir:
output_dir = self.args.output_dir
self._move_model_to_device()
train_dataset = self.load_and_cache_examples(train_data, verbose=verbose)
os.makedirs(output_dir, exist_ok=True)
global_step, tr_loss, best_accuracy = self.train(
train_dataset,
output_dir,
best_accuracy,
show_running_loss=show_running_loss,
eval_data=eval_data,
test_data=test_data,
verbose=verbose,
**kwargs,
)
final_dir = self.args.output_dir + "/final"
self._save_model(final_dir, model=self.model)
if verbose:
logger.info(" Training of {} model complete. Saved best to {}.".format(self.args.model_name, final_dir))
return best_accuracy
def train(
self,
train_dataset,
output_dir,
best_accuracy,
show_running_loss=True,
eval_data=None,
test_data=None,
verbose=True,
**kwargs,
):
"""
Trains the model on train_dataset.
Utility function to be used by the train_model() method. Not intended to be used directly.
"""
#epoch_lst = []
#acc_detects, pre_detects, rec_detects, f1_detects, accs, pre_absas, rec_absas, f1_absas = [], [], [], [], [], [], [], []
#tacc_detects, tpre_detects, trec_detects, tf1_detects, taccs, tpre_absas, trec_absas, tf1_absas = [], [], [], [], [], [], [], []
model = self.model
args = self.args
tb_writer = SummaryWriter(logdir=args.tensorboard_dir)
train_sampler = RandomSampler(train_dataset)
train_dataloader = DataLoader(
train_dataset,
sampler=train_sampler,
batch_size=args.train_batch_size,
num_workers=self.args.dataloader_num_workers,
)
if args.max_steps > 0:
t_total = args.max_steps
args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1
else:
t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs
no_decay = ["bias", "LayerNorm.weight"]
optimizer_grouped_parameters = []
custom_parameter_names = set()
for group in self.args.custom_parameter_groups:
params = group.pop("params")
custom_parameter_names.update(params)
param_group = {**group}
param_group["params"] = [p for n, p in model.named_parameters() if n in params]
optimizer_grouped_parameters.append(param_group)
for group in self.args.custom_layer_parameters:
layer_number = group.pop("layer")
layer = f"layer.{layer_number}."
group_d = {**group}
group_nd = {**group}
group_nd["weight_decay"] = 0.0
params_d = []
params_nd = []
for n, p in model.named_parameters():
if n not in custom_parameter_names and layer in n:
if any(nd in n for nd in no_decay):
params_nd.append(p)
else:
params_d.append(p)
custom_parameter_names.add(n)
group_d["params"] = params_d
group_nd["params"] = params_nd
optimizer_grouped_parameters.append(group_d)
optimizer_grouped_parameters.append(group_nd)
if not self.args.train_custom_parameters_only:
optimizer_grouped_parameters.extend(
[
{
"params": [
p
for n, p in model.named_parameters()
if n not in custom_parameter_names and not any(nd in n for nd in no_decay)
],
"weight_decay": args.weight_decay,
},
{
"params": [
p
for n, p in model.named_parameters()
if n not in custom_parameter_names and any(nd in n for nd in no_decay)
],
"weight_decay": 0.0,
},
]
)
warmup_steps = math.ceil(t_total * args.warmup_ratio)
args.warmup_steps = warmup_steps if args.warmup_steps == 0 else args.warmup_steps
# TODO: Use custom optimizer like with BertSum?
optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
scheduler = get_linear_schedule_with_warmup(
optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=t_total
)
if (args.model_name and os.path.isfile(os.path.join(args.model_name, "optimizer.pt")) and os.path.isfile(os.path.join(args.model_name, "scheduler.pt"))):
# Load in optimizer and scheduler states
optimizer.load_state_dict(torch.load(os.path.join(args.model_name, "optimizer.pt")))
scheduler.load_state_dict(torch.load(os.path.join(args.model_name, "scheduler.pt")))
if args.n_gpu > 1:
model = torch.nn.DataParallel(model)
logger.info(" Training started")
global_step = 0
tr_loss, logging_loss = 0.0, 0.0
model.zero_grad()
train_iterator = trange(int(args.num_train_epochs), desc="Epoch", disable=args.silent, mininterval=0)
epoch_number = 0
best_eval_metric = None
early_stopping_counter = 0
steps_trained_in_current_epoch = 0
epochs_trained = 0
if args.model_name and os.path.exists(args.model_name):
try:
# set global_step to gobal_step of last saved checkpoint from model path
checkpoint_suffix = args.model_name.split("/")[-1].split("-")
if len(checkpoint_suffix) > 2:
checkpoint_suffix = checkpoint_suffix[1]
else:
checkpoint_suffix = checkpoint_suffix[-1]
global_step = int(checkpoint_suffix)
epochs_trained = global_step // (len(train_dataloader) // args.gradient_accumulation_steps)
steps_trained_in_current_epoch = global_step % (
len(train_dataloader) // args.gradient_accumulation_steps
)
logger.info(" Continuing training from checkpoint, will skip to saved global_step")
logger.info(" Continuing training from epoch %d", epochs_trained)
logger.info(" Continuing training from global step %d", global_step)
logger.info(" Will skip the first %d steps in the current epoch", steps_trained_in_current_epoch)
except ValueError:
logger.info(" Starting fine-tuning.")
if args.wandb_project:
wandb.init(project=args.wandb_project, config={**asdict(args)}, **args.wandb_kwargs)
wandb.watch(self.model)
if args.fp16:
from torch.cuda import amp
scaler = amp.GradScaler()
model.train()
for current_epoch in train_iterator:
if epochs_trained > 0:
epochs_trained -= 1
continue
train_iterator.set_description(f"Epoch {epoch_number + 1} of {args.num_train_epochs}")
batch_iterator = tqdm(
train_dataloader,
desc=f"Running Epoch {epoch_number} of {args.num_train_epochs}",
disable=args.silent,
mininterval=0,
)
for step, batch in enumerate(batch_iterator):
if steps_trained_in_current_epoch > 0:
steps_trained_in_current_epoch -= 1
continue
# batch = tuple(t.to(device) for t in batch)
inputs = self._get_inputs_dict(batch)
if args.fp16:
with amp.autocast():
outputs = model(**inputs)
# model outputs are always tuple in pytorch-transformers (see doc)
loss = outputs[0]
else:
outputs = model(**inputs)
# model outputs are always tuple in pytorch-transformers (see doc)
loss = outputs[0]
if args.n_gpu > 1:
loss = loss.mean() # mean() to average on multi-gpu parallel training
current_loss = loss.item()
if show_running_loss:
batch_iterator.set_description(
f"Epochs {epoch_number}/{args.num_train_epochs}. Running Loss: {current_loss:9.4f}"
)
if args.gradient_accumulation_steps > 1:
loss = loss / args.gradient_accumulation_steps
if args.fp16:
scaler.scale(loss).backward()
else:
loss.backward()
tr_loss += loss.item()
if (step + 1) % args.gradient_accumulation_steps == 0:
if args.fp16:
scaler.unscale_(optimizer)
torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)
if args.fp16:
scaler.step(optimizer)
scaler.update()
else:
optimizer.step()
scheduler.step() # Update learning rate schedule
model.zero_grad()
global_step += 1
if args.logging_steps > 0 and global_step % args.logging_steps == 0:
# Log metrics
tb_writer.add_scalar("lr", scheduler.get_lr()[0], global_step)
tb_writer.add_scalar("loss", (tr_loss - logging_loss) / args.logging_steps, global_step)
logging_loss = tr_loss
if args.wandb_project:
wandb.log(
{
"Training loss": current_loss,
"lr": scheduler.get_lr()[0],
"global_step": global_step,
}
)
# if args.save_steps > 0 and global_step % args.save_steps == 0:
# # Save model checkpoint
# output_dir_current = os.path.join(output_dir, "checkpoint-{}".format(global_step))
# self._save_model(output_dir_current, optimizer, scheduler, model=model)
epoch_number += 1
output_dir_current = os.path.join(output_dir, "checkpoint-{}-epoch-{}".format(global_step, epoch_number))
print('batch: '+str(args.train_batch_size)+' accumulation_steps: '+str(args.gradient_accumulation_steps)+\
' lr: '+str(args.learning_rate)+' epochs: '+str(args.num_train_epochs)+' epoch: '+str(epoch_number))
print('---dev dataset----')
acc_detect, pre_detect, rec_detect, f1_detect, acc, pre_absa, rec_absa, f1_absa = predict_df(model, eval_data, tokenizer=self.encoder_tokenizer, device=self.device)
print('---test dataset----')
tacc_detect, tpre_detect, trec_detect, tf1_detect, tacc, tpre_absa, trec_absa, tf1_absa = predict_df(model, test_data, tokenizer=self.encoder_tokenizer, device=self.device)
# if acc > best_accuracy:
# best_accuracy = acc
# if not args.save_model_every_epoch:
# self._save_model(output_dir_current, optimizer, scheduler, model=model)
# with open('./MAMS_best_accuracy.txt', 'a') as f0:
# f0.writelines('batch: '+str(args.train_batch_size)+' accumulation_steps: '+str(args.gradient_accumulation_steps)+\
# ' lr: '+str(args.learning_rate)+' epochs: '+str(args.num_train_epochs)+' epoch: '+str(epoch_number)+' val_accuracy: '+str(best_accuracy)+\
# ' test_accuracy: '+str(tacc)+'\n')
# if args.save_model_every_epoch:
# os.makedirs(output_dir_current, exist_ok=True)
# self._save_model(output_dir_current, optimizer, scheduler, model=model)
if acc > best_accuracy:
# Cập nhật best_accuracy nếu tìm thấy mô hình tốt hơn
best_accuracy = acc
# Lưu mô hình tốt nhất vào output_dir_current
self._save_model(output_dir_current, optimizer, scheduler, model=model)
# Ghi lại thông tin về best_accuracy vào file log
with open('./MAMS_best_accuracy.txt', 'a') as f0:
f0.writelines(
'batch: ' + str(args.train_batch_size) +
' accumulation_steps: ' + str(args.gradient_accumulation_steps) +
' lr: ' + str(args.learning_rate) +
' epochs: ' + str(args.num_train_epochs) +
' epoch: ' + str(epoch_number) +
' val_accuracy: ' + str(best_accuracy) +
' test_accuracy: ' + str(tacc) + '\n'
)
return global_step, tr_loss / global_step, best_accuracy
def load_and_cache_examples(self, data, evaluate=False, no_cache=False, verbose=True, silent=False):
"""
Creates a T5Dataset from data.
Utility function for train() and eval() methods. Not intended to be used directly.
"""
encoder_tokenizer = self.encoder_tokenizer
decoder_tokenizer = self.decoder_tokenizer
args = self.args
if not no_cache:
no_cache = args.no_cache
if not no_cache:
os.makedirs(self.args.cache_dir, exist_ok=True)
mode = "dev" if evaluate else "train"
if args.dataset_class:
CustomDataset = args.dataset_class
return CustomDataset(encoder_tokenizer, decoder_tokenizer, args, data, mode)
else:
return SimpleSummarizationDataset(encoder_tokenizer, self.args, data, mode)
def _save_model(self, output_dir=None, optimizer=None, scheduler=None, model=None, results=None):
if not output_dir:
output_dir = self.args.output_dir
os.makedirs(output_dir, exist_ok=True)
logger.info(f"Saving model into {output_dir}")
if model and not self.args.no_save:
# Take care of distributed/parallel training
model_to_save = model.module if hasattr(model, "module") else model
self._save_model_args(output_dir)
os.makedirs(os.path.join(output_dir), exist_ok=True)
model_to_save.save_pretrained(output_dir)
self.config.save_pretrained(output_dir)
self.encoder_tokenizer.save_pretrained(output_dir)
torch.save(self.args, os.path.join(output_dir, "training_args.bin"))
if optimizer and scheduler and self.args.save_optimizer_and_scheduler:
torch.save(optimizer.state_dict(), os.path.join(output_dir, "optimizer.pt"))
torch.save(scheduler.state_dict(), os.path.join(output_dir, "scheduler.pt"))
if results:
output_eval_file = os.path.join(output_dir, "eval_results.txt")
with open(output_eval_file, "w") as writer:
for key in sorted(results.keys()):
writer.write("{} = {}\n".format(key, str(results[key])))
def _move_model_to_device(self):
self.model.to(self.device)
def _get_inputs_dict(self, batch):
device = self.device
pad_token_id = self.encoder_tokenizer.pad_token_id
source_ids, source_mask, y = batch["source_ids"], batch["source_mask"], batch["target_ids"]
y_ids = y[:, :-1].contiguous()
lm_labels = y[:, 1:].clone()
lm_labels[y[:, 1:] == pad_token_id] = -100
inputs = {
"input_ids": source_ids.to(device),
"attention_mask": source_mask.to(device),
"decoder_input_ids": y_ids.to(device),
"labels": lm_labels.to(device),
}
return inputs
def _save_model_args(self, output_dir):
os.makedirs(output_dir, exist_ok=True)
self.args.save(output_dir)
def _load_model_args(self, input_dir):
args = Seq2SeqArgs()
args.load(input_dir)
return args
def get_named_parameters(self):
return [n for n, p in self.model.named_parameters()]