File size: 3,088 Bytes
8c49cb6
 
 
 
 
df66f6e
314f91a
b1a1395
b2ed338
8c49cb6
 
a0b0f73
c1b8a96
2dadfdf
a0b0f73
a61a794
b2ed338
5b29e88
8c49cb6
f81a7fd
 
b1a1395
8c49cb6
a920cc8
70f791a
d1cea3f
 
adecec6
a01b95f
2b1b9e2
a01b95f
a920cc8
 
8c49cb6
 
 
 
8b28d2b
8c49cb6
 
adb0416
c1b8a96
8c49cb6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eed1ccd
8c49cb6
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
import json
import os

import pandas as pd

from src.display.formatting import has_no_nan_values, make_clickable_model
from src.display.utils import AutoEvalColumn, EvalQueueColumn
from src.leaderboard.read_evals import get_raw_eval_results
from src.about import Tasks, N_Tasks, Detail_Tasks


def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchmark_cols: list, version="1_correct") -> pd.DataFrame:
    """Creates a dataframe from all the individual experiment results"""
    cols = cols.copy()
    raw_data = get_raw_eval_results(results_path+"/"+version, requests_path)
    print(raw_data)
    tasks = Tasks if version == "1_correct" else list(N_Tasks) + list(Detail_Tasks)
    all_data_json = [v.to_dict(tasks) for v in raw_data]

    print(all_data_json)

    df = pd.DataFrame.from_records(all_data_json)
    df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False)
    
    print(cols)
    if version != "1_correct":
        cols.remove("VCR")
        benchmark_cols.remove("VCR")
    else:
        for task in Detail_Tasks:
            cols.remove(task.value.col_name)
    print(df)
    print(cols)
    df = df[cols].round(decimals=2)

    # filter out if any of the benchmarks have not been produced
    df = df[has_no_nan_values(df, benchmark_cols)]
    return df


def get_evaluation_queue_df(save_path: str, cols: list) -> list[pd.DataFrame]:
    """Creates the different dataframes for the evaluation queues requestes"""
    entries = [entry for entry in os.listdir(save_path) if not entry.startswith(".")]
    all_evals = []

    for entry in entries:
        if ".json" in entry:
            file_path = os.path.join(save_path, entry)
            with open(file_path) as fp:
                data = json.load(fp)

            data[EvalQueueColumn.model.name] = make_clickable_model(data["model"])
            data[EvalQueueColumn.revision.name] = data.get("revision", "main")

            all_evals.append(data)
        elif ".md" not in entry:
            # this is a folder
            sub_entries = [e for e in os.listdir(f"{save_path}/{entry}") if not e.startswith(".")]
            for sub_entry in sub_entries:
                file_path = os.path.join(save_path, entry, sub_entry)
                with open(file_path) as fp:
                    data = json.load(fp)

                data[EvalQueueColumn.model.name] = make_clickable_model(data["model"])
                data[EvalQueueColumn.revision.name] = data.get("revision", "main")
                all_evals.append(data)

    pending_list = [e for e in all_evals if e["status"] in ["PENDING", "RERUN"]]
    running_list = [e for e in all_evals if e["status"] == "RUNNING"]
    finished_list = [e for e in all_evals if e["status"].startswith("FINISHED") or e["status"] == "PENDING_NEW_EVAL"]
    df_pending = pd.DataFrame.from_records(pending_list, columns=cols)
    df_running = pd.DataFrame.from_records(running_list, columns=cols)
    df_finished = pd.DataFrame.from_records(finished_list, columns=cols)
    return df_finished[cols], df_running[cols], df_pending[cols]