Spaces:
Sleeping
Sleeping
File size: 7,516 Bytes
78a1bcb 9346f1c b977ee0 8b28d2b 9346f1c 4596a70 2a5f9fb 1ffc326 8c49cb6 77fa98d 8c49cb6 976f398 df66f6e 9d22eee df66f6e 24622c4 df66f6e 8c49cb6 2a73469 10f9b3c 50df158 d084b26 8b28d2b d084b26 4879b93 d084b26 4879b93 d084b26 26286b2 a885f09 8b28d2b a0b0f73 31b5122 ffefe11 adb0416 614ee1f 8b28d2b 6c28d60 8b28d2b 95e5b6f 8b28d2b f2620b7 ba0dc5b 497c4e4 8b28d2b d2179b0 78a1bcb 7644705 01233b7 58733e4 6e8f400 10f9b3c 8cb7546 36cc96d 8b28d2b 31b5122 b2b2434 31b5122 8fdc857 36cc96d a0b0f73 f2bc0a5 85bb81f 0227006 613696b 8dfa543 0227006 8dfa543 6e8f400 8dfa543 8c49cb6 8dfa543 fc1e99b 8dfa543 8c49cb6 8dfa543 fc1e99b 8dfa543 8c49cb6 8dfa543 fc1e99b 8dfa543 00358b1 78a1bcb f785497 336f5e2 36cc96d 336f5e2 0227006 6e8f400 b977ee0 0227006 78a1bcb 336f5e2 78a1bcb b977ee0 8cb7546 d16cee2 67109fc d16cee2 adb0416 d16cee2 10f9b3c a2790cb 10f9b3c daf60ae |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 |
import os
import shutil
import gradio as gr
from pathlib import Path
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
import pandas as pd
from apscheduler.schedulers.background import BackgroundScheduler
from huggingface_hub import snapshot_download
from src.about import (
CITATION_BUTTON_LABEL,
CITATION_BUTTON_TEXT,
EVALUATION_QUEUE_TEXT,
INTRODUCTION_TEXT,
LLM_BENCHMARKS_TEXT,
TITLE,
Detail_Tasks,
)
from src.display.css_html_js import custom_css
from src.display.utils import (
BENCHMARK_COLS,
COLS,
EVAL_COLS,
EVAL_TYPES,
AutoEvalColumn,
ModelType,
fields,
WeightType,
Precision
)
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
from src.populate import get_evaluation_queue_df, get_leaderboard_df
from src.submission.submit import add_new_eval
def restart_space():
API.restart_space(repo_id=REPO_ID)
### Space initialisation
try:
print(EVAL_REQUESTS_PATH)
snapshot_download(
repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
)
except Exception:
restart_space()
try:
print(EVAL_RESULTS_PATH)
snapshot_download(
repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
)
except Exception:
restart_space()
LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
LEADERBOARD_DF_N_CORRECT = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS, version="n_correct")
LEADERBOARD_DF_1_CORRECT_VAR = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS, version="1_correct_var")
(
finished_eval_queue_df,
running_eval_queue_df,
pending_eval_queue_df,
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
def init_leaderboard(dataframe):
if dataframe is None or dataframe.empty:
raise ValueError("Leaderboard DataFrame is empty or None.")
print(dataframe.columns)
return Leaderboard(
value=dataframe,
datatype=[c.type for c in fields(AutoEvalColumn)],
select_columns=SelectColumns(
default_selection=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default and c.name in dataframe.columns],
cant_deselect=[c.name for c in fields(AutoEvalColumn) if c.never_hidden and c.name in dataframe.columns],
label="Select Columns to Display:",
),
search_columns=[AutoEvalColumn.model.name],
hide_columns=[c.name for c in fields(AutoEvalColumn) if c.hidden and c.name in dataframe.columns],
filter_columns=[
ColumnFilter(AutoEvalColumn.output_format.name, type="checkboxgroup", label="Output Format"),
],
interactive=False,
)
# def upload_file(file):
# UPLOAD_FOLDER = "./data"
# if not os.path.exists(UPLOAD_FOLDER):
# os.mkdir(UPLOAD_FOLDER)
# shutil.copy(file, UPLOAD_FOLDER)
# gr.Info("File Uploaded!!!")
demo = gr.Blocks(css=custom_css)
with demo:
gr.HTML(TITLE)
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
with gr.Tabs(elem_classes="tab-buttons") as tabs:
with gr.TabItem("π
1 Correct", elem_id="llm-benchmark-tab-table", id=0):
leaderboard = init_leaderboard(LEADERBOARD_DF)
with gr.TabItem("π
1 Correct + Variations", elem_id="llm-benchmark-tab-table", id=4):
leaderboard = init_leaderboard(LEADERBOARD_DF_1_CORRECT_VAR)
with gr.TabItem("π
N Correct", elem_id="llm-benchmark-tab-table", id=1):
leaderboard = init_leaderboard(LEADERBOARD_DF_N_CORRECT)
with gr.TabItem("π About", elem_id="llm-benchmark-tab-table-n-correct", id=2):
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
with gr.TabItem("π Submit here! ", elem_id="llm-benchmark-tab-table", id=3):
with gr.Column():
with gr.Row():
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
with gr.Column():
with gr.Accordion(
f"β
Finished Evaluations ({len(finished_eval_queue_df)})",
open=False,
):
with gr.Row():
finished_eval_table = gr.components.Dataframe(
value=finished_eval_queue_df,
headers=EVAL_COLS,
datatype=EVAL_TYPES,
row_count=5,
)
with gr.Accordion(
f"π Running Evaluation Queue ({len(running_eval_queue_df)})",
open=False,
):
with gr.Row():
running_eval_table = gr.components.Dataframe(
value=running_eval_queue_df,
headers=EVAL_COLS,
datatype=EVAL_TYPES,
row_count=5,
)
with gr.Accordion(
f"β³ Pending Evaluation Queue ({len(pending_eval_queue_df)})",
open=False,
):
with gr.Row():
pending_eval_table = gr.components.Dataframe(
value=pending_eval_queue_df,
headers=EVAL_COLS,
datatype=EVAL_TYPES,
row_count=5,
)
with gr.Row():
gr.Markdown("# βοΈβ¨ Submit your model here!", elem_classes="markdown-text")
with gr.Row():
with gr.Column():
model_name_textbox = gr.Textbox(label="Model name")
revision_name_textbox = gr.Textbox(label="Revision commit", value="main")
output_format = gr.Textbox(label="Output format", value="Out-GEN")
version = gr.Dropdown(
["1_correct", "1_correct_var", "n_correct",], value="1_correct", multiselect=False, label="Task version",
)
with gr.Row():
u = gr.UploadButton("Upload a file", file_count="single")
submit_button = gr.Button("Submit Eval")
submission_result = gr.Markdown()
submit_button.click(
add_new_eval,
[
model_name_textbox,
output_format,
revision_name_textbox,
u,
version,
],
submission_result,
)
with gr.Row():
with gr.Accordion("π Citation", open=False):
citation_button = gr.Textbox(
value=CITATION_BUTTON_TEXT,
label=CITATION_BUTTON_LABEL,
lines=20,
elem_id="citation-button",
show_copy_button=True,
)
scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=1800)
scheduler.start()
demo.queue(default_concurrency_limit=40).launch() |