leaderboard2 / src /populate.py
hSterz's picture
F
270b1f6
import json
import os
import pandas as pd
from src.display.formatting import has_no_nan_values, make_clickable_model
from src.display.utils import AutoEvalColumn, EvalQueueColumn
from src.leaderboard.read_evals import get_raw_eval_results
from src.about import Tasks, N_Tasks, Detail_Tasks
def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchmark_cols: list, version="1_correct") -> pd.DataFrame:
"""Creates a dataframe from all the individual experiment results"""
cols = cols.copy()
raw_data = get_raw_eval_results(results_path+"/"+version, requests_path)
print(raw_data)
tasks = list(N_Tasks) + list(Detail_Tasks) if "n_" in version else list(Tasks)
if version == "1_correct_var":
tasks = [t for t in tasks if t.value.col_name != "VCR"]
all_data_json = [v.to_dict(tasks) for v in raw_data]
print(all_data_json)
df = pd.DataFrame.from_records(all_data_json)
df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False)
print(cols)
if version != "1_correct":
cols.remove("VCR")
if version != "1_correct_var":
benchmark_cols.remove("VCR")
if version != "n_correct":
for task in Detail_Tasks:
cols.remove(task.value.col_name)
print(df)
print(cols)
df = df[cols].round(decimals=2)
# filter out if any of the benchmarks have not been produced
df = df[has_no_nan_values(df, benchmark_cols)]
return df
def get_evaluation_queue_df(save_path: str, cols: list) -> list[pd.DataFrame]:
"""Creates the different dataframes for the evaluation queues requestes"""
version = ["1_correct",] # "1_correct_var", "n_correct"]
entries = [os.path.join(v, entry) for v in version for entry in os.listdir(os.path.join(save_path, v)) if not entry.startswith(".")]
print(entries)
all_evals = []
for entry in entries:
if not ".txt" in entry:
file_path = os.path.join(save_path, entry, "eval_request.json")
with open(file_path) as fp:
data = json.load(fp)
data[EvalQueueColumn.model.name] = make_clickable_model(data["model"])
data[EvalQueueColumn.revision.name] = data.get("revision", "main")
data[EvalQueueColumn.output_format.name] = data.get("output_format")
data[EvalQueueColumn.dataset_version.name] = file_path.split("/")[-3]
all_evals.append(data)
pending_list = [e for e in all_evals if e["status"] in ["PENDING", "RERUN"]]
running_list = [e for e in all_evals if e["status"] == "RUNNING"]
finished_list = [e for e in all_evals if e["status"].startswith("FINISHED") or e["status"] == "PENDING_NEW_EVAL"]
df_pending = pd.DataFrame.from_records(pending_list, columns=cols)
df_running = pd.DataFrame.from_records(running_list, columns=cols)
df_finished = pd.DataFrame.from_records(finished_list, columns=cols)
return df_finished[cols], df_running[cols], df_pending[cols]