import json import os import pandas as pd from src.display.formatting import has_no_nan_values, make_clickable_model from src.display.utils import AutoEvalColumn, EvalQueueColumn from src.leaderboard.read_evals import get_raw_eval_results from src.about import Tasks, N_Tasks, Detail_Tasks def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchmark_cols: list, version="1_correct") -> pd.DataFrame: """Creates a dataframe from all the individual experiment results""" cols = cols.copy() raw_data = get_raw_eval_results(results_path+"/"+version, requests_path) print(raw_data) tasks = list(N_Tasks) + list(Detail_Tasks) if "n_" in version else list(Tasks) if version == "1_correct_var": tasks = [t for t in tasks if t.value.col_name != "VCR"] all_data_json = [v.to_dict(tasks) for v in raw_data] print(all_data_json) df = pd.DataFrame.from_records(all_data_json) df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False) print(cols) if version != "1_correct": cols.remove("VCR") if version != "1_correct_var": benchmark_cols.remove("VCR") if version != "n_correct": for task in Detail_Tasks: cols.remove(task.value.col_name) print(df) print(cols) df = df[cols].round(decimals=2) # filter out if any of the benchmarks have not been produced df = df[has_no_nan_values(df, benchmark_cols)] return df def get_evaluation_queue_df(save_path: str, cols: list) -> list[pd.DataFrame]: """Creates the different dataframes for the evaluation queues requestes""" version = ["1_correct",] # "1_correct_var", "n_correct"] entries = [os.path.join(v, entry) for v in version for entry in os.listdir(os.path.join(save_path, v)) if not entry.startswith(".")] print(entries) all_evals = [] for entry in entries: if not ".txt" in entry: file_path = os.path.join(save_path, entry, "eval_request.json") with open(file_path) as fp: data = json.load(fp) data[EvalQueueColumn.model.name] = make_clickable_model(data["model"]) data[EvalQueueColumn.revision.name] = data.get("revision", "main") data[EvalQueueColumn.output_format.name] = data.get("output_format") data[EvalQueueColumn.dataset_version.name] = file_path.split("/")[-3] all_evals.append(data) pending_list = [e for e in all_evals if e["status"] in ["PENDING", "RERUN"]] running_list = [e for e in all_evals if e["status"] == "RUNNING"] finished_list = [e for e in all_evals if e["status"].startswith("FINISHED") or e["status"] == "PENDING_NEW_EVAL"] df_pending = pd.DataFrame.from_records(pending_list, columns=cols) df_running = pd.DataFrame.from_records(running_list, columns=cols) df_finished = pd.DataFrame.from_records(finished_list, columns=cols) return df_finished[cols], df_running[cols], df_pending[cols]