File size: 4,482 Bytes
5d756f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import pathlib
from typing import Tuple
import numpy as np
import torch
import pathlib
try:
    import pyspng
    PYSPNG_IMPORTED = True
except ImportError:
    PYSPNG_IMPORTED = False
    print("Could not load pyspng. Defaulting to pillow image backend.")
    from PIL import Image
from tops import logger


class FDFDataset:

    def __init__(self,
                 dirpath,
                 imsize: Tuple[int],
                 load_keypoints: bool,
                 transform):
        dirpath = pathlib.Path(dirpath)
        self.dirpath = dirpath
        self.transform = transform
        self.imsize = imsize[0]
        self.load_keypoints = load_keypoints
        assert self.dirpath.is_dir(),\
            f"Did not find dataset at: {dirpath}"
        image_dir = self.dirpath.joinpath("images", str(self.imsize))
        self.image_paths = list(image_dir.glob("*.png"))
        assert len(self.image_paths) > 0,\
            f"Did not find images in: {image_dir}"
        self.image_paths.sort(key=lambda x: int(x.stem))
        self.landmarks = np.load(self.dirpath.joinpath("landmarks.npy")).reshape(-1, 7, 2).astype(np.float32)

        self.bounding_boxes = torch.load(self.dirpath.joinpath("bounding_box", f"{self.imsize}.torch"))
        assert len(self.image_paths) == len(self.bounding_boxes)
        assert len(self.image_paths) == len(self.landmarks)
        logger.log(
            f"Dataset loaded from: {dirpath}. Number of samples:{len(self)}, imsize={imsize}")

    def get_mask(self, idx):
        mask = torch.ones((1, self.imsize, self.imsize), dtype=torch.bool)
        bounding_box = self.bounding_boxes[idx]
        x0, y0, x1, y1 = bounding_box
        mask[:, y0:y1, x0:x1] = 0
        return mask

    def __len__(self):
        return len(self.image_paths)

    def __getitem__(self, index):
        impath = self.image_paths[index]
        if PYSPNG_IMPORTED:
            with open(impath, "rb") as fp:
                im = pyspng.load(fp.read())
        else:
            with Image.open(impath) as fp:
                im = np.array(fp)
        im = torch.from_numpy(np.rollaxis(im, -1, 0))
        masks = self.get_mask(index)
        landmark = self.landmarks[index]
        batch = {
            "img": im,
            "mask": masks,
        }
        if self.load_keypoints:
            batch["keypoints"] = landmark
        if self.transform is None:
            return batch
        return self.transform(batch)


class FDF256Dataset:

    def __init__(self,
                 dirpath,
                 load_keypoints: bool,
                 transform):
        dirpath = pathlib.Path(dirpath)
        self.dirpath = dirpath
        self.transform = transform
        self.load_keypoints = load_keypoints
        assert self.dirpath.is_dir(),\
            f"Did not find dataset at: {dirpath}"
        image_dir = self.dirpath.joinpath("images")
        self.image_paths = list(image_dir.glob("*.png"))
        assert len(self.image_paths) > 0,\
            f"Did not find images in: {image_dir}"
        self.image_paths.sort(key=lambda x: int(x.stem))
        self.landmarks = np.load(self.dirpath.joinpath("landmarks.npy")).reshape(-1, 7, 2).astype(np.float32)
        self.bounding_boxes = torch.from_numpy(np.load(self.dirpath.joinpath("bounding_box.npy")))
        assert len(self.image_paths) == len(self.bounding_boxes)
        assert len(self.image_paths) == len(self.landmarks)
        logger.log(
            f"Dataset loaded from: {dirpath}. Number of samples:{len(self)}")

    def get_mask(self, idx):
        mask = torch.ones((1, 256, 256), dtype=torch.bool)
        bounding_box = self.bounding_boxes[idx]
        x0, y0, x1, y1 = bounding_box
        mask[:, y0:y1, x0:x1] = 0
        return mask

    def __len__(self):
        return len(self.image_paths)

    def __getitem__(self, index):
        impath = self.image_paths[index]
        if PYSPNG_IMPORTED:
            with open(impath, "rb") as fp:
                im = pyspng.load(fp.read())
        else:
            with Image.open(impath) as fp:
                im = np.array(fp)
        im = torch.from_numpy(np.rollaxis(im, -1, 0))
        masks = self.get_mask(index)
        landmark = self.landmarks[index]
        batch = {
            "img": im,
            "mask": masks,
        }
        if self.load_keypoints:
            batch["keypoints"] = landmark
        if self.transform is None:
            return batch
        return self.transform(batch)