Spaces:
Sleeping
Sleeping
File size: 2,788 Bytes
6a37b07 d504aac 6a37b07 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 |
import numpy as np
import torch
import torch.nn.functional as F
from torchvision.transforms.functional import normalize
from huggingface_hub import hf_hub_download
from fastapi import FastAPI, HTTPException
from PIL import Image
import httpx
import io
import briarmbg # Importando o modelo de remoção de fundo
app = FastAPI()
# Carregar modelo BRIA RMBG
net = briarmbg.BriaRMBG()
model_path = hf_hub_download("briaai/RMBG-1.4", "model.pth")
if torch.cuda.is_available():
net.load_state_dict(torch.load(model_path))
net = net.cuda()
else:
net.load_state_dict(torch.load(model_path, map_location="cpu"))
net.eval()
# Função para redimensionar a imagem antes de processar
def resize_image(image):
image = image.convert("RGB")
model_input_size = (1024, 1024)
return image.resize(model_input_size, Image.BILINEAR)
# Função para remover o fundo da imagem
def remove_bg(image: Image.Image):
orig_image = image
w, h = orig_image.size
image = resize_image(orig_image)
im_np = np.array(image)
im_tensor = torch.tensor(im_np, dtype=torch.float32).permute(2, 0, 1)
im_tensor = torch.unsqueeze(im_tensor, 0) / 255.0
im_tensor = normalize(im_tensor, [0.5, 0.5, 0.5], [1.0, 1.0, 1.0])
if torch.cuda.is_available():
im_tensor = im_tensor.cuda()
# Inference do modelo
result = net(im_tensor)[0][0]
result = torch.squeeze(F.interpolate(result, size=(h, w), mode="bilinear"), 0)
# Normalizar para 0-255
ma, mi = torch.max(result), torch.min(result)
result = (result - mi) / (ma - mi)
im_array = (result * 255).cpu().data.numpy().astype(np.uint8)
pil_im = Image.fromarray(np.squeeze(im_array))
# Criar imagem sem fundo
new_im = Image.new("RGBA", pil_im.size, (0, 0, 0, 0))
new_im.paste(orig_image, mask=pil_im)
return new_im
# Função para baixar imagem de uma URL
async def download_image(image_url: str) -> Image.Image:
async with httpx.AsyncClient() as client:
response = await client.get(image_url)
if response.status_code != 200:
raise HTTPException(status_code=400, detail="Erro ao baixar imagem")
return Image.open(io.BytesIO(response.content))
# Endpoint para remover fundo
@app.get("/remove-bg/")
async def remove_bg_from_url(image_url: str):
try:
image = await download_image(image_url)
output_image = remove_bg(image)
# Salvar a imagem temporariamente na memória
img_io = io.BytesIO()
output_image.save(img_io, format="PNG")
img_io.seek(0)
return {
"message": "Fundo removido com sucesso!",
"image": img_io.getvalue()
}
except Exception as e:
raise HTTPException(status_code=500, detail=str(e)) |