Spaces:
Running
on
Zero
Running
on
Zero
File size: 11,180 Bytes
5b8ee78 0edd51d d5cdaf8 0edd51d 5b8ee78 0edd51d 8a50ffc 793156d 5b8ee78 d49eeee d5cdaf8 5b8ee78 d5cdaf8 d49eeee 4dc3375 5b8ee78 fabbd5e d5cdaf8 0edd51d d5cdaf8 0edd51d 4dc3375 41548b6 89539f7 b6711e8 d49eeee 0edd51d 89539f7 0edd51d 5b8ee78 8a50ffc 89539f7 d49eeee 89539f7 d8fa9a9 d5cdaf8 b6711e8 d49eeee d5cdaf8 d49eeee 52ca30c d49eeee d5cdaf8 5b8ee78 41548b6 5b8ee78 d5cdaf8 5b8ee78 4dc3375 5b8ee78 d49eeee b6711e8 5b8ee78 d49eeee 5b8ee78 7c5d546 4dc3375 b608e99 4dc3375 b608e99 4dc3375 d49eeee 4dc3375 b608e99 4dc3375 0edd51d d5cdaf8 89539f7 d5cdaf8 f864b44 d5cdaf8 d49eeee cbcf8c0 d5cdaf8 d49eeee 52ca30c d49eeee 0edd51d d5cdaf8 89539f7 0edd51d 89539f7 f864b44 d5cdaf8 d49eeee 89539f7 f864b44 d5cdaf8 89539f7 f864b44 89539f7 f864b44 89539f7 f864b44 0edd51d f864b44 89539f7 f864b44 0edd51d d5cdaf8 f864b44 89539f7 d5cdaf8 89539f7 d5cdaf8 f864b44 d5cdaf8 f864b44 d8fa9a9 89539f7 d5cdaf8 89539f7 0edd51d b6711e8 d49eeee d5cdaf8 0edd51d d5cdaf8 0edd51d 59bd43d 0edd51d 59bd43d d5cdaf8 b6711e8 d49eeee 1ea0405 41548b6 d49eeee 52ca30c d49eeee d5cdaf8 59bd43d 0edd51d 89539f7 0edd51d 89539f7 5b8ee78 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 |
#!/usr/bin/env pythona
from __future__ import annotations
import requests
import os
import random
import random
import string
import gradio as gr
import numpy as np
import spaces
import torch
import gc
import cv2
from PIL import Image
from accelerate import init_empty_weights
from io import BytesIO
from diffusers.utils import load_image
from diffusers import StableDiffusionXLControlNetPipeline, StableDiffusionXLControlNetInpaintPipeline, ControlNetModel, AutoencoderKL, DiffusionPipeline, AutoPipelineForImage2Image, AutoPipelineForInpainting, UNet2DConditionModel
from controlnet_aux import HEDdetector
from compel import Compel, ReturnedEmbeddingsType
import threading
DESCRIPTION = "# Run any LoRA or SD Model"
if not torch.cuda.is_available():
DESCRIPTION += "\n<p>⚠️ This space is running on the CPU. This demo doesn't work on CPU 😞! Run on a GPU by duplicating this space or test our website for free and unlimited by <a href='https://squaadai.com'>clicking here</a>, which provides these and more options.</p>"
MAX_SEED = np.iinfo(np.int32).max
CUDA_LAUNCH_BLOCKING=1
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "1824"))
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE") == "1"
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD") == "1"
ENABLE_USE_LORA = os.getenv("ENABLE_USE_LORA", "1") == "1"
ENABLE_USE_LORA2 = os.getenv("ENABLE_USE_LORA2", "1") == "1"
ENABLE_USE_IMG2IMG = os.getenv("ENABLE_USE_IMG2IMG", "1") == "1"
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
return seed
cached_pipelines = {} # Dicionário para armazenar os pipelines
cached_loras = {}
# Crie um objeto Lock
pipeline_lock = threading.Lock()
@spaces.GPU
def generate(
prompt: str = "",
negative_prompt: str = "",
use_negative_prompt: bool = False,
seed: int = 0,
width: int = 1024,
height: int = 1024,
guidance_scale_base: float = 5.0,
num_inference_steps_base: int = 25,
strength_img2img: float = 0.7,
use_lora: bool = False,
use_lora2: bool = False,
model = 'stabilityai/stable-diffusion-xl-base-1.0',
lora = '',
lora2 = '',
lora_scale: float = 0.7,
lora_scale2: float = 0.7,
use_img2img: bool = False,
url = '',
):
global cached_pipelines, cached_loras
if torch.cuda.is_available():
# Construa a chave do dicionário baseada no modelo e no tipo de pipeline
pipeline_key = (model, use_img2img)
if pipeline_key not in cached_pipelines:
if not use_img2img:
cached_pipelines[pipeline_key] = DiffusionPipeline.from_pretrained(model, safety_checker=None, requires_safety_checker=False, torch_dtype=torch.float16, low_cpu_mem_usage=True)
elif use_img2img:
cached_pipelines[pipeline_key] = AutoPipelineForImage2Image.from_pretrained(model, safety_checker=None, requires_safety_checker=False, torch_dtype=torch.float16, low_cpu_mem_usage=True)
pipe = cached_pipelines[pipeline_key] # Usa o pipeline carregado da memória
if use_img2img:
init_image = load_image(url)
if use_lora:
lora_key = (lora, lora_scale)
if lora_key not in cached_loras:
adapter_name = ''.join(random.choice(string.ascii_letters) for _ in range(5))
pipe.load_lora_weights(lora, adapter_name=adapter_name)
cached_loras[lora_key] = adapter_name
else:
adapter_name = cached_loras[lora_key]
pipe.set_adapters(adapter_name, adapter_weights=[lora_scale])
if use_lora2:
lora_key1 = (lora, lora_scale)
lora_key2 = (lora2, lora_scale2)
if lora_key1 not in cached_loras:
adapter_name1 = ''.join(random.choice(string.ascii_letters) for _ in range(5))
pipe.load_lora_weights(lora, adapter_name=adapter_name1)
cached_loras[lora_key1] = adapter_name1
else:
adapter_name1 = cached_loras[lora_key1]
if lora_key2 not in cached_loras:
adapter_name2 = ''.join(random.choice(string.ascii_letters) for _ in range(5))
pipe.load_lora_weights(lora2, adapter_name=adapter_name2)
cached_loras[lora_key2] = adapter_name2
else:
adapter_name2 = cached_loras[lora_key2]
pipe.set_adapters([adapter_name1, adapter_name2], adapter_weights=[lora_scale, lora_scale2])
pipe.enable_model_cpu_offload()
generator = torch.Generator().manual_seed(seed)
if not use_negative_prompt:
negative_prompt = None # type: ignore
with pipeline_lock:
if use_img2img:
result = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
image=init_image,
strength=strength_img2img,
width=width,
height=height,
guidance_scale=guidance_scale_base,
num_inference_steps=num_inference_steps_base,
generator=generator,
).images[0]
else:
result = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
width=width,
height=height,
guidance_scale=guidance_scale_base,
num_inference_steps=num_inference_steps_base,
generator=generator,
).images[0]
# Limpeza de memória
del pipe
torch.cuda.empty_cache()
gc.collect()
return result
with gr.Blocks(theme=gr.themes.Soft(), css="style.css") as demo:
gr.HTML(
"<p><center>📙 For any additional support, join our <a href='https://discord.gg/JprjXpjt9K'>Discord</a></center></p>"
)
gr.Markdown(DESCRIPTION, elem_id="description")
with gr.Group():
model = gr.Text(label='Model', placeholder='e.g. stabilityai/stable-diffusion-xl-base-1.0')
lora = gr.Text(label='LoRA 1', placeholder='e.g. nerijs/pixel-art-xl')
lora2 = gr.Text(label='LoRA 2', placeholder='e.g. nerijs/pixel-art-xl')
lora_scale = gr.Slider(
info="The closer to 1, the more it will resemble LoRA, but errors may be visible.",
label="Lora Scale 1",
minimum=0.01,
maximum=1,
step=0.01,
value=0.7,
)
lora_scale2 = gr.Slider(
info="The closer to 1, the more it will resemble LoRA, but errors may be visible.",
label="Lora Scale 2",
minimum=0.01,
maximum=1,
step=0.01,
value=0.7,
)
url = gr.Text(label='URL (Img2Img)')
with gr.Row():
prompt = gr.Text(
placeholder="Input prompt",
label="Prompt",
show_label=False,
max_lines=1,
container=False,
)
run_button = gr.Button("Run", scale=0)
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced options", open=False):
with gr.Row():
use_img2img = gr.Checkbox(label='Use Img2Img', value=False, visible=ENABLE_USE_IMG2IMG)
use_lora = gr.Checkbox(label='Use Lora 1', value=False, visible=ENABLE_USE_LORA)
use_lora2 = gr.Checkbox(label='Use Lora 2', value=False, visible=ENABLE_USE_LORA2)
use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=False)
negative_prompt = gr.Text(
placeholder="Input Negative Prompt",
label="Negative prompt",
max_lines=1,
visible=False,
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
with gr.Row():
guidance_scale_base = gr.Slider(
info="Scale for classifier-free guidance",
label="Guidance scale",
minimum=1,
maximum=20,
step=0.1,
value=5.0,
)
with gr.Row():
num_inference_steps_base = gr.Slider(
info="Number of denoising steps",
label="Number of inference steps",
minimum=10,
maximum=100,
step=1,
value=25,
)
with gr.Row():
strength_img2img = gr.Slider(
info="Strength for Img2Img",
label="Strength",
minimum=0,
maximum=1,
step=0.01,
value=0.7,
)
use_negative_prompt.change(
fn=lambda x: gr.update(visible=x),
inputs=use_negative_prompt,
outputs=negative_prompt,
queue=False,
api_name=False,
)
use_lora.change(
fn=lambda x: gr.update(visible=x),
inputs=use_lora,
outputs=lora,
queue=False,
api_name=False,
)
use_lora2.change(
fn=lambda x: gr.update(visible=x),
inputs=use_lora2,
outputs=lora2,
queue=False,
api_name=False,
)
use_img2img.change(
fn=lambda x: gr.update(visible=x),
inputs=use_img2img,
outputs=url,
queue=False,
api_name=False,
)
gr.on(
triggers=[
prompt.submit,
negative_prompt.submit,
run_button.click,
],
fn=randomize_seed_fn,
inputs=[seed, randomize_seed],
outputs=seed,
queue=False,
api_name=False,
).then(
fn=generate,
inputs=[
prompt,
negative_prompt,
use_negative_prompt,
seed,
width,
height,
guidance_scale_base,
num_inference_steps_base,
strength_img2img,
use_lora,
use_lora2,
model,
lora,
lora2,
lora_scale,
lora_scale2,
use_img2img,
url,
],
outputs=result,
api_name="run",
)
if __name__ == "__main__":
demo.queue(max_size=4, default_concurrency_limit=4).launch() |