File size: 11,180 Bytes
5b8ee78
0edd51d
 
 
d5cdaf8
0edd51d
 
5b8ee78
 
0edd51d
 
 
8a50ffc
793156d
5b8ee78
d49eeee
d5cdaf8
5b8ee78
d5cdaf8
d49eeee
 
 
4dc3375
5b8ee78
fabbd5e
d5cdaf8
0edd51d
d5cdaf8
0edd51d
 
4dc3375
41548b6
89539f7
 
b6711e8
d49eeee
 
0edd51d
89539f7
0edd51d
 
 
 
 
 
5b8ee78
 
 
 
 
8a50ffc
89539f7
d49eeee
89539f7
 
 
 
 
 
d8fa9a9
d5cdaf8
b6711e8
d49eeee
d5cdaf8
 
d49eeee
52ca30c
d49eeee
d5cdaf8
 
5b8ee78
 
 
41548b6
5b8ee78
 
d5cdaf8
5b8ee78
 
 
 
 
 
 
4dc3375
5b8ee78
d49eeee
 
b6711e8
5b8ee78
 
 
 
 
 
 
 
d49eeee
 
5b8ee78
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c5d546
4dc3375
 
 
 
 
 
 
 
 
b608e99
 
4dc3375
 
 
 
 
 
 
 
 
 
b608e99
4dc3375
 
 
 
 
 
 
d49eeee
4dc3375
b608e99
4dc3375
 
 
0edd51d
d5cdaf8
 
 
89539f7
d5cdaf8
f864b44
d5cdaf8
d49eeee
 
cbcf8c0
d5cdaf8
d49eeee
 
 
 
 
 
 
 
 
52ca30c
 
 
 
 
d49eeee
0edd51d
 
d5cdaf8
89539f7
0edd51d
 
 
 
89539f7
 
 
f864b44
d5cdaf8
d49eeee
 
89539f7
f864b44
d5cdaf8
89539f7
f864b44
 
 
89539f7
 
 
 
 
 
 
 
f864b44
 
89539f7
f864b44
 
 
 
0edd51d
f864b44
89539f7
f864b44
 
 
 
0edd51d
d5cdaf8
f864b44
89539f7
d5cdaf8
 
89539f7
 
 
 
 
d5cdaf8
f864b44
d5cdaf8
 
f864b44
 
 
d8fa9a9
89539f7
d5cdaf8
 
 
 
 
 
 
 
89539f7
0edd51d
 
 
 
 
 
 
 
b6711e8
 
 
 
 
 
 
d49eeee
 
 
 
 
 
 
d5cdaf8
0edd51d
d5cdaf8
 
0edd51d
 
 
 
59bd43d
 
 
 
 
 
0edd51d
 
 
 
 
 
 
59bd43d
 
 
 
 
 
 
 
 
d5cdaf8
b6711e8
d49eeee
1ea0405
41548b6
d49eeee
52ca30c
d49eeee
d5cdaf8
 
59bd43d
0edd51d
89539f7
0edd51d
89539f7
 
5b8ee78
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
#!/usr/bin/env pythona

from __future__ import annotations

import requests
import os
import random
import random
import string

import gradio as gr
import numpy as np
import spaces
import torch
import gc
import cv2
from PIL import Image
from accelerate import init_empty_weights
from io import BytesIO
from diffusers.utils import load_image
from diffusers import StableDiffusionXLControlNetPipeline, StableDiffusionXLControlNetInpaintPipeline, ControlNetModel, AutoencoderKL, DiffusionPipeline, AutoPipelineForImage2Image, AutoPipelineForInpainting, UNet2DConditionModel
from controlnet_aux import HEDdetector
from compel import Compel, ReturnedEmbeddingsType
import threading

DESCRIPTION = "# Run any LoRA or SD Model"
if not torch.cuda.is_available():
    DESCRIPTION += "\n<p>⚠️ This space is running on the CPU. This demo doesn't work on CPU 😞! Run on a GPU by duplicating this space or test our website for free and unlimited by <a href='https://squaadai.com'>clicking here</a>, which provides these and more options.</p>"

MAX_SEED = np.iinfo(np.int32).max
CUDA_LAUNCH_BLOCKING=1
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "1824"))
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE") == "1"
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD") == "1"
ENABLE_USE_LORA = os.getenv("ENABLE_USE_LORA", "1") == "1"
ENABLE_USE_LORA2 = os.getenv("ENABLE_USE_LORA2", "1") == "1"
ENABLE_USE_IMG2IMG = os.getenv("ENABLE_USE_IMG2IMG", "1") == "1"

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    return seed

cached_pipelines = {}  # Dicionário para armazenar os pipelines
cached_loras = {}
# Crie um objeto Lock
pipeline_lock = threading.Lock()

@spaces.GPU
def generate(
    prompt: str = "",
    negative_prompt: str = "",
    use_negative_prompt: bool = False,
    seed: int = 0,
    width: int = 1024,
    height: int = 1024,
    guidance_scale_base: float = 5.0,
    num_inference_steps_base: int = 25,
    strength_img2img: float = 0.7,
    use_lora: bool = False,
    use_lora2: bool = False,
    model = 'stabilityai/stable-diffusion-xl-base-1.0',
    lora = '',
    lora2 = '',
    lora_scale: float = 0.7,
    lora_scale2: float = 0.7,
    use_img2img: bool = False,
    url = '',
):    
    global cached_pipelines, cached_loras

    if torch.cuda.is_available():
        # Construa a chave do dicionário baseada no modelo e no tipo de pipeline
        pipeline_key = (model, use_img2img)

        if pipeline_key not in cached_pipelines:
            if not use_img2img:
                cached_pipelines[pipeline_key] = DiffusionPipeline.from_pretrained(model, safety_checker=None, requires_safety_checker=False, torch_dtype=torch.float16, low_cpu_mem_usage=True)
            elif use_img2img:
                cached_pipelines[pipeline_key] = AutoPipelineForImage2Image.from_pretrained(model, safety_checker=None, requires_safety_checker=False, torch_dtype=torch.float16, low_cpu_mem_usage=True)
    
        pipe = cached_pipelines[pipeline_key]  # Usa o pipeline carregado da memória
        
        if use_img2img:
            init_image = load_image(url)
                
        if use_lora:
            lora_key = (lora, lora_scale)
            if lora_key not in cached_loras:
                adapter_name = ''.join(random.choice(string.ascii_letters) for _ in range(5))
                pipe.load_lora_weights(lora, adapter_name=adapter_name)
                cached_loras[lora_key] = adapter_name
            else:
                adapter_name = cached_loras[lora_key]
            pipe.set_adapters(adapter_name, adapter_weights=[lora_scale])
            
        if use_lora2:
            lora_key1 = (lora, lora_scale)
            lora_key2 = (lora2, lora_scale2)
            if lora_key1 not in cached_loras:
                adapter_name1 = ''.join(random.choice(string.ascii_letters) for _ in range(5))
                pipe.load_lora_weights(lora, adapter_name=adapter_name1)
                cached_loras[lora_key1] = adapter_name1
            else:
                adapter_name1 = cached_loras[lora_key1]
            if lora_key2 not in cached_loras:
                adapter_name2 = ''.join(random.choice(string.ascii_letters) for _ in range(5))
                pipe.load_lora_weights(lora2, adapter_name=adapter_name2)
                cached_loras[lora_key2] = adapter_name2
            else:
                adapter_name2 = cached_loras[lora_key2]
            pipe.set_adapters([adapter_name1, adapter_name2], adapter_weights=[lora_scale, lora_scale2])

        pipe.enable_model_cpu_offload()
        generator = torch.Generator().manual_seed(seed)
        
        if not use_negative_prompt:
            negative_prompt = None  # type: ignore
            
        with pipeline_lock:
            if use_img2img:
                result = pipe(
                    prompt=prompt,
                    negative_prompt=negative_prompt,
                    image=init_image,
                    strength=strength_img2img,
                    width=width,
                    height=height,
                    guidance_scale=guidance_scale_base,
                    num_inference_steps=num_inference_steps_base,
                    generator=generator,
                ).images[0]
            else:
                result = pipe(
                    prompt=prompt,
                    negative_prompt=negative_prompt,
                    width=width,
                    height=height,
                    guidance_scale=guidance_scale_base,
                    num_inference_steps=num_inference_steps_base,
                    generator=generator,
                ).images[0]
    
        # Limpeza de memória
        del pipe
        torch.cuda.empty_cache()
        gc.collect()
        return result

with gr.Blocks(theme=gr.themes.Soft(), css="style.css") as demo:
    gr.HTML(
        "<p><center>📙 For any additional support, join our <a href='https://discord.gg/JprjXpjt9K'>Discord</a></center></p>"
    )
    gr.Markdown(DESCRIPTION, elem_id="description")
    with gr.Group():
        model = gr.Text(label='Model', placeholder='e.g. stabilityai/stable-diffusion-xl-base-1.0')
        lora = gr.Text(label='LoRA 1', placeholder='e.g. nerijs/pixel-art-xl')
        lora2 = gr.Text(label='LoRA 2', placeholder='e.g. nerijs/pixel-art-xl')
        lora_scale = gr.Slider(
                info="The closer to 1, the more it will resemble LoRA, but errors may be visible.",
                label="Lora Scale 1",
                minimum=0.01,
                maximum=1,
                step=0.01,
                value=0.7,
            )
        lora_scale2 = gr.Slider(
                info="The closer to 1, the more it will resemble LoRA, but errors may be visible.",
                label="Lora Scale 2",
                minimum=0.01,
                maximum=1,
                step=0.01,
                value=0.7,
            )
        url = gr.Text(label='URL (Img2Img)')
        with gr.Row():
            prompt = gr.Text(
                placeholder="Input prompt",
                label="Prompt",
                show_label=False,
                max_lines=1,
                container=False,
            )
            run_button = gr.Button("Run", scale=0)
        result = gr.Image(label="Result", show_label=False)
    with gr.Accordion("Advanced options", open=False):
        with gr.Row():
            use_img2img = gr.Checkbox(label='Use Img2Img', value=False, visible=ENABLE_USE_IMG2IMG)
            use_lora = gr.Checkbox(label='Use Lora 1', value=False, visible=ENABLE_USE_LORA)
            use_lora2 = gr.Checkbox(label='Use Lora 2', value=False, visible=ENABLE_USE_LORA2)
            use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=False)
        negative_prompt = gr.Text(
            placeholder="Input Negative Prompt",
            label="Negative prompt",
            max_lines=1,
            visible=False,
        )
        seed = gr.Slider(
            label="Seed",
            minimum=0,
            maximum=MAX_SEED,
            step=1,
            value=0,
        )
        randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
        with gr.Row():
            width = gr.Slider(
                label="Width",
                minimum=256,
                maximum=MAX_IMAGE_SIZE,
                step=32,
                value=1024,
            )
            height = gr.Slider(
                label="Height",
                minimum=256,
                maximum=MAX_IMAGE_SIZE,
                step=32,
                value=1024,
            )
            
        with gr.Row():
            guidance_scale_base = gr.Slider(
                info="Scale for classifier-free guidance",
                label="Guidance scale",
                minimum=1,
                maximum=20,
                step=0.1,
                value=5.0,
            )
        with gr.Row():
            num_inference_steps_base = gr.Slider(
                info="Number of denoising steps",
                label="Number of inference steps",
                minimum=10,
                maximum=100,
                step=1,
                value=25,
            )
        with gr.Row():
            strength_img2img = gr.Slider(
                info="Strength for Img2Img",
                label="Strength",
                minimum=0,
                maximum=1,
                step=0.01,
                value=0.7,
            )

    use_negative_prompt.change(
        fn=lambda x: gr.update(visible=x),
        inputs=use_negative_prompt,
        outputs=negative_prompt,
        queue=False,
        api_name=False,
    )
    use_lora.change(
        fn=lambda x: gr.update(visible=x),
        inputs=use_lora,
        outputs=lora,
        queue=False,
        api_name=False,
    )
    use_lora2.change(
        fn=lambda x: gr.update(visible=x),
        inputs=use_lora2,
        outputs=lora2,
        queue=False,
        api_name=False,
    )
    use_img2img.change(
        fn=lambda x: gr.update(visible=x),
        inputs=use_img2img,
        outputs=url,
        queue=False,
        api_name=False,
    )

    gr.on(
        triggers=[
            prompt.submit,
            negative_prompt.submit,
            run_button.click,
        ],
        fn=randomize_seed_fn,
        inputs=[seed, randomize_seed],
        outputs=seed,
        queue=False,
        api_name=False,
    ).then(
        fn=generate,
        inputs=[
            prompt,
            negative_prompt,
            use_negative_prompt,
            seed,
            width,
            height,
            guidance_scale_base,
            num_inference_steps_base,
            strength_img2img,
            use_lora,
            use_lora2,
            model,
            lora,
            lora2,
            lora_scale,
            lora_scale2,
            use_img2img,
            url,
        ],
        outputs=result,
        api_name="run",
    )

if __name__ == "__main__":
    demo.queue(max_size=4, default_concurrency_limit=4).launch()