import gradio as gr from transformers import AutoModelForCausalLM, AutoTokenizer import torch MODEL_NAME = "hacer201145/Failed_Model" tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, torch_dtype=torch.float16, device_map="auto") def chat(message, history): input_text = message inputs = tokenizer(input_text, return_tensors="pt").to(model.device) with torch.no_grad(): outputs = model.generate(**inputs, max_new_tokens=100, pad_token_id=tokenizer.eos_token_id) response = tokenizer.decode(outputs[0], skip_special_tokens=True) return response iface = gr.ChatInterface(chat) iface.launch()