Spaces:
Running
Running
import torch | |
import gradio as gr | |
from transformers import GPT2LMHeadModel, GPT2Tokenizer | |
# Load the model and tokenizer | |
def load_model(): | |
model_name = "gpt2" | |
tokenizer = GPT2Tokenizer.from_pretrained(model_name) | |
model = GPT2LMHeadModel.from_pretrained(model_name) | |
return tokenizer, model | |
# Function to generate response with instructions | |
def generate_response(user_input, instructions="Be friendly and helpful, and ensure your response is accurate and relevant."): | |
tokenizer, model = load_model() | |
model.eval() | |
# Add instructions at the beginning of the user input | |
prompt = instructions + " " + user_input | |
input_ids = tokenizer.encode(prompt, return_tensors="pt") | |
with torch.no_grad(): | |
output = model.generate( | |
input_ids, | |
max_length=100, | |
pad_token_id=tokenizer.eos_token_id, | |
no_repeat_ngram_size=2, # Avoid repeating phrases | |
temperature=0.7, # Control randomness | |
top_k=50, # Limit token selection | |
top_p=0.9, # Nucleus sampling | |
do_sample=True # Enable sampling | |
) | |
response = tokenizer.decode(output[:, input_ids.shape[-1]:][0], skip_special_tokens=True) | |
return response | |
# Gradio interface | |
def chatbot_interface(): | |
interface = gr.Interface( | |
fn=generate_response, # Function to process the input | |
inputs=[ | |
gr.Textbox(label="Enter your message", placeholder="Ask a question or make a request."), | |
gr.Textbox(label="Instruction for the bot", placeholder="For example: Be friendly and helpful, ensure accuracy.") | |
], # Two text boxes: one for input and one for instructions | |
outputs="text", # Output type - text | |
title="GPT-2 Chatbot with Accuracy and Relevance Instructions", # Application title | |
description="This is a chatbot based on the GPT-2 model. You can provide instructions to adjust the style of the bot's responses, ensuring accuracy and relevance.", # Description | |
theme="compact" # Interface theme | |
) | |
interface.launch() | |
# Run the interface | |
if __name__ == "__main__": | |
chatbot_interface() |