File size: 4,348 Bytes
453ed2e
 
 
 
 
a29e3ba
453ed2e
 
d58d62b
 
453ed2e
 
a29e3ba
 
 
 
01e1199
453ed2e
 
 
 
 
a29e3ba
453ed2e
 
 
 
 
a29e3ba
453ed2e
811e3ea
453ed2e
 
01e1199
 
 
453ed2e
 
 
 
 
 
a29e3ba
 
 
 
04cb33c
a29e3ba
453ed2e
a29e3ba
 
453ed2e
 
04cb33c
5921c24
15643d7
 
453ed2e
15643d7
a02d083
453ed2e
0277b1d
453ed2e
 
 
 
8963f5c
 
fc0e251
 
 
8963f5c
 
 
 
ba2cfc1
 
 
8963f5c
 
453ed2e
 
 
 
 
a02d083
0277b1d
453ed2e
 
 
 
 
 
 
 
 
 
 
 
 
5921c24
453ed2e
 
 
 
 
 
04cb33c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
import torch
import os
import gradio as gr
from PIL import Image
from diffusers import (
    DiffusionPipeline,
    StableDiffusionControlNetImg2ImgPipeline,
    ControlNetModel,
    DPMSolverMultistepScheduler,  # <-- Added import
    EulerDiscreteScheduler  # <-- Added import
)

# Initialize both pipelines
init_pipe = DiffusionPipeline.from_pretrained("SG161222/Realistic_Vision_V2.0", torch_dtype=torch.float16).to("cuda")
controlnet = ControlNetModel.from_pretrained("monster-labs/control_v1p_sd15_qrcode_monster", torch_dtype=torch.float16)
main_pipe = StableDiffusionControlNetImg2ImgPipeline.from_pretrained(
    "SG161222/Realistic_Vision_V2.0",
    controlnet=controlnet,
    safety_checker=None,
    torch_dtype=torch.float16,
).to("cuda")

# Sampler map
SAMPLER_MAP = {
    "DPM++ Karras SDE": lambda config: DPMSolverMultistepScheduler.from_config(config, use_karras=True, algorithm_type="sde-dpmsolver++"),
    "Euler": lambda config: EulerDiscreteScheduler.from_config(config),
}

# Inference function
def inference(
    control_image: Image.Image,
    prompt: str,
    negative_prompt: str,
    guidance_scale: float = 8.0,
    controlnet_conditioning_scale: float = 1,
    strength: float = 0.9,
    seed: int = -1,
    sampler = "DPM++ Karras SDE",
):
    if prompt is None or prompt == "":
        raise gr.Error("Prompt is required")
    
    # Generate the initial image
    init_image = init_pipe(prompt).images[0]

    # Rest of your existing code
    control_image = control_image.resize((512, 512))
    main_pipe.scheduler = SAMPLER_MAP[sampler](main_pipe.scheduler.config)
    generator = torch.manual_seed(seed) if seed != -1 else torch.Generator()

    out = main_pipe(
        prompt=prompt,
        negative_prompt=negative_prompt,
        image=init_image,
        control_image=control_image,
        guidance_scale=guidance_scale,
        controlnet_conditioning_scale=controlnet_conditioning_scale,
        generator=generator,
        strength=strength,
        num_inference_steps=30,
    )
    return out.images[0]

with gr.Blocks() as app:
    gr.Markdown(
        '''
        <center>

        <span style="color:blue; font-size:32px;">Illusion Diffusion πŸŒ€</span>  
        <span style="color:black; font-size:24px;">Generate stunning illusion artwork with Stable Diffusion</span>  
        <span style="color:black; font-size:20px;">A space by AP [Follow me on Twitter](https://twitter.com/angrypenguinPNG)**</span>  
        
        </center>

        <p style="text-align:center;">
        *This project works by using the QR Control Net by Monster Labs: [Monster Labs QR Control Net](https://huggingface.co/monster-labs/control_v1p_sd15_qrcode_monster).*
        *Given a prompt, we generate an init image and pass that alongside the control illusion to create a stunning illusion!* 
        *Credit to : [MrUgleh](https://twitter.com/MrUgleh) for discovering the workflow :)*
        </p>

        '''
    )
    
    with gr.Row():
        with gr.Column():
            control_image = gr.Image(label="Input Illusion", type="pil")
            prompt = gr.Textbox(label="Prompt")
            negative_prompt = gr.Textbox(label="Negative Prompt", value="ugly, disfigured, low quality, blurry, nsfw")
            with gr.Accordion(label="Advanced Options", open=False):
                controlnet_conditioning_scale = gr.Slider(minimum=0.0, maximum=5.0, step=0.01, value=1.1, label="Controlnet Conditioning Scale")
                strength = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, value=0.9, label="Strength")
                guidance_scale = gr.Slider(minimum=0.0, maximum=50.0, step=0.25, value=7.5, label="Guidance Scale")
                sampler = gr.Dropdown(choices=list(SAMPLER_MAP.keys()), value="DPM++ Karras SDE")
                seed = gr.Slider(minimum=-1, maximum=9999999999, step=1, value=2313123, label="Seed", randomize=True)
            run_btn = gr.Button("Run")
        with gr.Column():
            result_image = gr.Image(label="Illusion Diffusion Output")
            
    run_btn.click(
        inference,
        inputs=[control_image, prompt, negative_prompt, guidance_scale, controlnet_conditioning_scale, strength, seed, sampler],
        outputs=[result_image]
    )

app.queue(concurrency_count=4, max_size=20)

if __name__ == "__main__":
    app.launch(debug=True)