Spaces:
Runtime error
Runtime error
File size: 4,348 Bytes
453ed2e a29e3ba 453ed2e d58d62b 453ed2e a29e3ba 01e1199 453ed2e a29e3ba 453ed2e a29e3ba 453ed2e 811e3ea 453ed2e 01e1199 453ed2e a29e3ba 04cb33c a29e3ba 453ed2e a29e3ba 453ed2e 04cb33c 5921c24 15643d7 453ed2e 15643d7 a02d083 453ed2e 0277b1d 453ed2e 8963f5c fc0e251 8963f5c ba2cfc1 8963f5c 453ed2e a02d083 0277b1d 453ed2e 5921c24 453ed2e 04cb33c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 |
import torch
import os
import gradio as gr
from PIL import Image
from diffusers import (
DiffusionPipeline,
StableDiffusionControlNetImg2ImgPipeline,
ControlNetModel,
DPMSolverMultistepScheduler, # <-- Added import
EulerDiscreteScheduler # <-- Added import
)
# Initialize both pipelines
init_pipe = DiffusionPipeline.from_pretrained("SG161222/Realistic_Vision_V2.0", torch_dtype=torch.float16).to("cuda")
controlnet = ControlNetModel.from_pretrained("monster-labs/control_v1p_sd15_qrcode_monster", torch_dtype=torch.float16)
main_pipe = StableDiffusionControlNetImg2ImgPipeline.from_pretrained(
"SG161222/Realistic_Vision_V2.0",
controlnet=controlnet,
safety_checker=None,
torch_dtype=torch.float16,
).to("cuda")
# Sampler map
SAMPLER_MAP = {
"DPM++ Karras SDE": lambda config: DPMSolverMultistepScheduler.from_config(config, use_karras=True, algorithm_type="sde-dpmsolver++"),
"Euler": lambda config: EulerDiscreteScheduler.from_config(config),
}
# Inference function
def inference(
control_image: Image.Image,
prompt: str,
negative_prompt: str,
guidance_scale: float = 8.0,
controlnet_conditioning_scale: float = 1,
strength: float = 0.9,
seed: int = -1,
sampler = "DPM++ Karras SDE",
):
if prompt is None or prompt == "":
raise gr.Error("Prompt is required")
# Generate the initial image
init_image = init_pipe(prompt).images[0]
# Rest of your existing code
control_image = control_image.resize((512, 512))
main_pipe.scheduler = SAMPLER_MAP[sampler](main_pipe.scheduler.config)
generator = torch.manual_seed(seed) if seed != -1 else torch.Generator()
out = main_pipe(
prompt=prompt,
negative_prompt=negative_prompt,
image=init_image,
control_image=control_image,
guidance_scale=guidance_scale,
controlnet_conditioning_scale=controlnet_conditioning_scale,
generator=generator,
strength=strength,
num_inference_steps=30,
)
return out.images[0]
with gr.Blocks() as app:
gr.Markdown(
'''
<center>
<span style="color:blue; font-size:32px;">Illusion Diffusion π</span>
<span style="color:black; font-size:24px;">Generate stunning illusion artwork with Stable Diffusion</span>
<span style="color:black; font-size:20px;">A space by AP [Follow me on Twitter](https://twitter.com/angrypenguinPNG)**</span>
</center>
<p style="text-align:center;">
*This project works by using the QR Control Net by Monster Labs: [Monster Labs QR Control Net](https://huggingface.co/monster-labs/control_v1p_sd15_qrcode_monster).*
*Given a prompt, we generate an init image and pass that alongside the control illusion to create a stunning illusion!*
*Credit to : [MrUgleh](https://twitter.com/MrUgleh) for discovering the workflow :)*
</p>
'''
)
with gr.Row():
with gr.Column():
control_image = gr.Image(label="Input Illusion", type="pil")
prompt = gr.Textbox(label="Prompt")
negative_prompt = gr.Textbox(label="Negative Prompt", value="ugly, disfigured, low quality, blurry, nsfw")
with gr.Accordion(label="Advanced Options", open=False):
controlnet_conditioning_scale = gr.Slider(minimum=0.0, maximum=5.0, step=0.01, value=1.1, label="Controlnet Conditioning Scale")
strength = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, value=0.9, label="Strength")
guidance_scale = gr.Slider(minimum=0.0, maximum=50.0, step=0.25, value=7.5, label="Guidance Scale")
sampler = gr.Dropdown(choices=list(SAMPLER_MAP.keys()), value="DPM++ Karras SDE")
seed = gr.Slider(minimum=-1, maximum=9999999999, step=1, value=2313123, label="Seed", randomize=True)
run_btn = gr.Button("Run")
with gr.Column():
result_image = gr.Image(label="Illusion Diffusion Output")
run_btn.click(
inference,
inputs=[control_image, prompt, negative_prompt, guidance_scale, controlnet_conditioning_scale, strength, seed, sampler],
outputs=[result_image]
)
app.queue(concurrency_count=4, max_size=20)
if __name__ == "__main__":
app.launch(debug=True) |