Spaces:
Runtime error
Runtime error
File size: 11,221 Bytes
18274c1 453ed2e 49ad6a5 453ed2e 1a833ba 453ed2e a29e3ba 00f6a78 9ad92f4 453ed2e 9ad92f4 4984c7e d58d62b 453ed2e e56af76 b31f6c0 96e351a c000f9c 96e351a 453ed2e 00f6a78 a29e3ba 4984c7e 00f6a78 4984c7e 9ad92f4 00f6a78 453ed2e 00f6a78 453ed2e 4984c7e 453ed2e 7391723 4984c7e 00f6a78 7391723 720f6c3 4984c7e 00f6a78 9ad92f4 453ed2e a29e3ba 453ed2e 9ad92f4 4984c7e 86d5e88 b31f6c0 49ad6a5 e56af76 49ad6a5 e56af76 49ad6a5 a29e3ba 18274c1 453ed2e 811e3ea 453ed2e 01e1199 4984c7e 453ed2e c000f9c 453ed2e b31f6c0 453ed2e a29e3ba 9ad92f4 a29e3ba 4984c7e 7391723 a29e3ba 1a833ba 7391723 1a833ba a29e3ba 453ed2e 4984c7e 9ad92f4 453ed2e 4984c7e b31f6c0 c000f9c 49ad6a5 4984c7e c000f9c 453ed2e 4984c7e 8963f5c 4cdfd9c 94cc393 8963f5c 792633a 4984c7e 453ed2e 49ad6a5 453ed2e 96e351a 4984c7e 1d029c0 453ed2e 9ad92f4 4984c7e 1a833ba 453ed2e 4984c7e 96e351a dc7aed1 fc70300 86d5e88 b31f6c0 ad4d288 1a833ba a86f74c 563dfc0 453ed2e 86d5e88 b31f6c0 ad4d288 453ed2e a86f74c 563dfc0 18274c1 c000f9c 3960c94 453ed2e 3960c94 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 |
import spaces
import torch
import gradio as gr
from gradio import processing_utils, utils
from PIL import Image
import random
from diffusers import (
DiffusionPipeline,
AutoencoderKL,
StableDiffusionControlNetPipeline,
ControlNetModel,
StableDiffusionLatentUpscalePipeline,
StableDiffusionImg2ImgPipeline,
StableDiffusionControlNetImg2ImgPipeline,
DPMSolverMultistepScheduler, # <-- Added import
EulerDiscreteScheduler # <-- Added import
)
import tempfile
import time
from share_btn import community_icon_html, loading_icon_html, share_js
import user_history
from illusion_style import css
BASE_MODEL = "SG161222/Realistic_Vision_V5.1_noVAE"
# Initialize both pipelines
vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse", torch_dtype=torch.float16)
#init_pipe = DiffusionPipeline.from_pretrained("SG161222/Realistic_Vision_V5.1_noVAE", torch_dtype=torch.float16)
controlnet = ControlNetModel.from_pretrained("monster-labs/control_v1p_sd15_qrcode_monster", torch_dtype=torch.float16)#, torch_dtype=torch.float16)
main_pipe = StableDiffusionControlNetPipeline.from_pretrained(
BASE_MODEL,
controlnet=controlnet,
vae=vae,
safety_checker=None,
torch_dtype=torch.float16,
).to("cuda")
#main_pipe.unet = torch.compile(main_pipe.unet, mode="reduce-overhead", fullgraph=True)
#main_pipe.unet.to(memory_format=torch.channels_last)
#main_pipe.unet = torch.compile(main_pipe.unet, mode="reduce-overhead", fullgraph=True)
#model_id = "stabilityai/sd-x2-latent-upscaler"
image_pipe = StableDiffusionControlNetImg2ImgPipeline(**main_pipe.components)
#image_pipe.unet = torch.compile(image_pipe.unet, mode="reduce-overhead", fullgraph=True)
#upscaler = StableDiffusionLatentUpscalePipeline.from_pretrained(model_id, torch_dtype=torch.float16)
#upscaler.to("cuda")
# Sampler map
SAMPLER_MAP = {
"DPM++ Karras SDE": lambda config: DPMSolverMultistepScheduler.from_config(config, use_karras=True, algorithm_type="sde-dpmsolver++"),
"Euler": lambda config: EulerDiscreteScheduler.from_config(config),
}
def center_crop_resize(img, output_size=(512, 512)):
width, height = img.size
# Calculate dimensions to crop to the center
new_dimension = min(width, height)
left = (width - new_dimension)/2
top = (height - new_dimension)/2
right = (width + new_dimension)/2
bottom = (height + new_dimension)/2
# Crop and resize
img = img.crop((left, top, right, bottom))
img = img.resize(output_size)
return img
def common_upscale(samples, width, height, upscale_method, crop=False):
if crop == "center":
old_width = samples.shape[3]
old_height = samples.shape[2]
old_aspect = old_width / old_height
new_aspect = width / height
x = 0
y = 0
if old_aspect > new_aspect:
x = round((old_width - old_width * (new_aspect / old_aspect)) / 2)
elif old_aspect < new_aspect:
y = round((old_height - old_height * (old_aspect / new_aspect)) / 2)
s = samples[:,:,y:old_height-y,x:old_width-x]
else:
s = samples
return torch.nn.functional.interpolate(s, size=(height, width), mode=upscale_method)
def upscale(samples, upscale_method, scale_by):
#s = samples.copy()
width = round(samples["images"].shape[3] * scale_by)
height = round(samples["images"].shape[2] * scale_by)
s = common_upscale(samples["images"], width, height, upscale_method, "disabled")
return (s)
def check_inputs(prompt: str, control_image: Image.Image):
if control_image is None:
raise gr.Error("Please select or upload an Input Illusion")
if prompt is None or prompt == "":
raise gr.Error("Prompt is required")
def convert_to_pil(base64_image):
pil_image = Image.open(base64_image)
return pil_image
def convert_to_base64(pil_image):
with tempfile.NamedTemporaryFile(suffix='.png', delete=False) as temp_file:
image.save(temp_file.name)
return temp_file.name
# Inference function
@spaces.GPU
def inference(
control_image: Image.Image,
prompt: str,
negative_prompt: str,
guidance_scale: float = 8.0,
controlnet_conditioning_scale: float = 1,
control_guidance_start: float = 1,
control_guidance_end: float = 1,
upscaler_strength: float = 0.5,
seed: int = -1,
sampler = "DPM++ Karras SDE",
progress = gr.Progress(track_tqdm=True),
profile: gr.OAuthProfile | None = None,
):
start_time = time.time()
start_time_struct = time.localtime(start_time)
start_time_formatted = time.strftime("%H:%M:%S", start_time_struct)
print(f"Inference started at {start_time_formatted}")
# Generate the initial image
#init_image = init_pipe(prompt).images[0]
# Rest of your existing code
control_image_small = center_crop_resize(control_image)
control_image_large = center_crop_resize(control_image, (1024, 1024))
main_pipe.scheduler = SAMPLER_MAP[sampler](main_pipe.scheduler.config)
my_seed = random.randint(0, 2**32 - 1) if seed == -1 else seed
generator = torch.Generator(device="cuda").manual_seed(my_seed)
out = main_pipe(
prompt=prompt,
negative_prompt=negative_prompt,
image=control_image_small,
guidance_scale=float(guidance_scale),
controlnet_conditioning_scale=float(controlnet_conditioning_scale),
generator=generator,
control_guidance_start=float(control_guidance_start),
control_guidance_end=float(control_guidance_end),
num_inference_steps=15,
output_type="latent"
)
upscaled_latents = upscale(out, "nearest-exact", 2)
out_image = image_pipe(
prompt=prompt,
negative_prompt=negative_prompt,
control_image=control_image_large,
image=upscaled_latents,
guidance_scale=float(guidance_scale),
generator=generator,
num_inference_steps=20,
strength=upscaler_strength,
control_guidance_start=float(control_guidance_start),
control_guidance_end=float(control_guidance_end),
controlnet_conditioning_scale=float(controlnet_conditioning_scale)
)
end_time = time.time()
end_time_struct = time.localtime(end_time)
end_time_formatted = time.strftime("%H:%M:%S", end_time_struct)
print(f"Inference ended at {end_time_formatted}, taking {end_time-start_time}s")
# Save image + metadata
user_history.save_image(
label=prompt,
image=out_image["images"][0],
profile=profile,
metadata={
"prompt": prompt,
"negative_prompt": negative_prompt,
"guidance_scale": guidance_scale,
"controlnet_conditioning_scale": controlnet_conditioning_scale,
"control_guidance_start": control_guidance_start,
"control_guidance_end": control_guidance_end,
"upscaler_strength": upscaler_strength,
"seed": seed,
"sampler": sampler,
},
)
return out_image["images"][0], gr.update(visible=True), gr.update(visible=True), my_seed
with gr.Blocks() as app:
gr.Markdown(
'''
<center><h1>Illusion Diffusion HQ π</h1></span>
<span font-size:16px;">Generate stunning high quality illusion artwork with Stable Diffusion</span>
</center>
A space by AP [Follow me on Twitter](https://twitter.com/angrypenguinPNG) with big contributions from [multimodalart](https://twitter.com/multimodalart)
This project works by using [Monster Labs QR Control Net](https://huggingface.co/monster-labs/control_v1p_sd15_qrcode_monster).
Given a prompt and your pattern, we use a QR code conditioned controlnet to create a stunning illusion! Credit to: [MrUgleh](https://twitter.com/MrUgleh) for discovering the workflow :)
'''
)
state_img_input = gr.State()
state_img_output = gr.State()
with gr.Row():
with gr.Column():
control_image = gr.Image(label="Input Illusion", type="pil", elem_id="control_image")
controlnet_conditioning_scale = gr.Slider(minimum=0.0, maximum=5.0, step=0.01, value=0.8, label="Illusion strength", elem_id="illusion_strength", info="ControlNet conditioning scale")
gr.Examples(examples=["checkers.png", "checkers_mid.jpg", "pattern.png", "ultra_checkers.png", "spiral.jpeg", "funky.jpeg" ], inputs=control_image)
prompt = gr.Textbox(label="Prompt", elem_id="prompt", info="Type what you want to generate", placeholder="Medieval village scene with busy streets and castle in the distance")
negative_prompt = gr.Textbox(label="Negative Prompt", info="Type what you don't want to see", value="low quality", elem_id="negative_prompt")
with gr.Accordion(label="Advanced Options", open=False):
guidance_scale = gr.Slider(minimum=0.0, maximum=50.0, step=0.25, value=7.5, label="Guidance Scale")
sampler = gr.Dropdown(choices=list(SAMPLER_MAP.keys()), value="Euler")
control_start = gr.Slider(minimum=0.0, maximum=1.0, step=0.1, value=0, label="Start of ControlNet")
control_end = gr.Slider(minimum=0.0, maximum=1.0, step=0.1, value=1, label="End of ControlNet")
strength = gr.Slider(minimum=0.0, maximum=1.0, step=0.1, value=1, label="Strength of the upscaler")
seed = gr.Slider(minimum=-1, maximum=9999999999, step=1, value=-1, label="Seed", info="-1 means random seed")
used_seed = gr.Number(label="Last seed used",interactive=False)
run_btn = gr.Button("Run")
with gr.Column():
result_image = gr.Image(label="Illusion Diffusion Output", interactive=False, elem_id="output")
with gr.Group(elem_id="share-btn-container", visible=False) as share_group:
community_icon = gr.HTML(community_icon_html)
loading_icon = gr.HTML(loading_icon_html)
share_button = gr.Button("Share to community", elem_id="share-btn")
prompt.submit(
check_inputs,
inputs=[prompt, control_image],
queue=False
).success(
inference,
inputs=[control_image, prompt, negative_prompt, guidance_scale, controlnet_conditioning_scale, control_start, control_end, strength, seed, sampler],
outputs=[result_image, result_image, share_group, used_seed])
run_btn.click(
check_inputs,
inputs=[prompt, control_image],
queue=False
).success(
inference,
inputs=[control_image, prompt, negative_prompt, guidance_scale, controlnet_conditioning_scale, control_start, control_end, strength, seed, sampler],
outputs=[result_image, result_image, share_group, used_seed])
share_button.click(None, [], [], js=share_js)
with gr.Blocks(css=css) as app_with_history:
with gr.Tab("Demo"):
app.render()
with gr.Tab("Past generations"):
user_history.render()
app_with_history.queue(max_size=20,api_open=False )
if __name__ == "__main__":
app_with_history.launch(max_threads=400)
|