Spaces:
Runtime error
Runtime error
import torch | |
import os | |
import gradio as gr | |
from PIL import Image | |
from diffusers import ( | |
DiffusionPipeline, | |
StableDiffusionControlNetPipeline, | |
ControlNetModel, | |
StableDiffusionLatentUpscalePipeline, | |
DPMSolverMultistepScheduler, # <-- Added import | |
EulerDiscreteScheduler # <-- Added import | |
) | |
# Initialize both pipelines | |
init_pipe = DiffusionPipeline.from_pretrained("SG161222/Realistic_Vision_V2.0", torch_dtype=torch.float16).to("cuda") | |
controlnet = ControlNetModel.from_pretrained("monster-labs/control_v1p_sd15_qrcode_monster", torch_dtype=torch.float16) | |
main_pipe = StableDiffusionControlNetPipeline.from_pretrained( | |
"SG161222/Realistic_Vision_V2.0", | |
controlnet=controlnet, | |
safety_checker=None, | |
torch_dtype=torch.float16, | |
).to("cuda") | |
model_id = "stabilityai/sd-x2-latent-upscaler" | |
upscaler = StableDiffusionLatentUpscalePipeline.from_pretrained(model_id, torch_dtype=torch.float16) | |
upscaler.to("cuda") | |
# Sampler map | |
SAMPLER_MAP = { | |
"DPM++ Karras SDE": lambda config: DPMSolverMultistepScheduler.from_config(config, use_karras=True, algorithm_type="sde-dpmsolver++"), | |
"Euler": lambda config: EulerDiscreteScheduler.from_config(config), | |
} | |
def center_crop_resize(img, output_size=(512, 512)): | |
width, height = img.size | |
# Calculate dimensions to crop to the center | |
new_dimension = min(width, height) | |
left = (width - new_dimension)/2 | |
top = (height - new_dimension)/2 | |
right = (width + new_dimension)/2 | |
bottom = (height + new_dimension)/2 | |
# Crop and resize | |
img = img.crop((left, top, right, bottom)) | |
img = img.resize(output_size) | |
return img | |
# Inference function | |
def inference( | |
control_image: Image.Image, | |
prompt: str, | |
negative_prompt: str, | |
guidance_scale: float = 8.0, | |
controlnet_conditioning_scale: float = 1, | |
seed: int = -1, | |
sampler = "DPM++ Karras SDE", | |
progress = gr.Progress(track_tqdm=True) | |
): | |
if prompt is None or prompt == "": | |
raise gr.Error("Prompt is required") | |
# Generate the initial image | |
#init_image = init_pipe(prompt).images[0] | |
# Rest of your existing code | |
control_image = center_crop_resize(control_image) | |
main_pipe.scheduler = SAMPLER_MAP[sampler](main_pipe.scheduler.config) | |
generator = torch.manual_seed(seed) if seed != -1 else torch.Generator() | |
out = main_pipe( | |
prompt=prompt, | |
negative_prompt=negative_prompt, | |
image=control_image, | |
#control_image=control_image, | |
guidance_scale=float(guidance_scale), | |
controlnet_conditioning_scale=float(controlnet_conditioning_scale), | |
generator=generator, | |
#strength=strength, | |
num_inference_steps=30, | |
#output_type="latent" | |
).images[0] | |
return out | |
with gr.Blocks() as app: | |
gr.Markdown( | |
''' | |
<center><h1>Illusion Diffusion π</h1></span> | |
<span font-size:16px;">Generate stunning illusion artwork with Stable Diffusion</span> | |
<span font-size:10px;">A space by AP [Follow me on Twitter](https://twitter.com/angrypenguinPNG)</span> | |
</center> | |
This project works by using the QR Control Net by Monster Labs: [Monster Labs QR Control Net](https://huggingface.co/monster-labs/control_v1p_sd15_qrcode_monster). | |
Given a prompt and your pattern, we use a QR code conditioned controlnet to create a stunning illusion! Credit to: MrUgleh (https://twitter.com/MrUgleh) for discovering the workflow :) | |
''' | |
) | |
with gr.Row(): | |
with gr.Column(): | |
control_image = gr.Image(label="Input Illusion", type="pil") | |
controlnet_conditioning_scale = gr.Slider(minimum=0.0, maximum=5.0, step=0.01, value=0.8, label="Illusion strength", info="ControlNet conditioning scale") | |
gr.Examples(examples=["checkers.png", "pattern.png", "spiral.jpeg"], inputs=control_image) | |
prompt = gr.Textbox(label="Prompt") | |
negative_prompt = gr.Textbox(label="Negative Prompt", value="low quality") | |
with gr.Accordion(label="Advanced Options", open=False): | |
#strength = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, value=0.9, label="Strength") | |
guidance_scale = gr.Slider(minimum=0.0, maximum=50.0, step=0.25, value=7.5, label="Guidance Scale") | |
sampler = gr.Dropdown(choices=list(SAMPLER_MAP.keys()), value="Euler") | |
seed = gr.Slider(minimum=-1, maximum=9999999999, step=1, value=2313123, label="Seed", randomize=True) | |
run_btn = gr.Button("Run") | |
with gr.Column(): | |
result_image = gr.Image(label="Illusion Diffusion Output") | |
run_btn.click( | |
inference, | |
inputs=[control_image, prompt, negative_prompt, guidance_scale, controlnet_conditioning_scale, seed, sampler], | |
outputs=[result_image] | |
) | |
app.queue(max_size=20) | |
if __name__ == "__main__": | |
app.launch() |