File size: 4,147 Bytes
196cbb2
 
542edf7
196cbb2
542edf7
e8721da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ec9d9e0
e8721da
 
 
 
 
ec9d9e0
e8721da
196cbb2
e8721da
196cbb2
 
e8721da
 
 
196cbb2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
542edf7
 
196cbb2
 
 
 
ec9d9e0
542edf7
 
196cbb2
ec9d9e0
e8721da
542edf7
 
 
 
 
 
 
e8721da
196cbb2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
542edf7
196cbb2
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
import pandas as pd

from forecast import get_forecast_data
from retrieve_coefs_max_yield import get_coefs_Kc_Ky_and_max_yield
from utils.soil_utils import get_soil_properties


def calculate_ETx(Kc, ETo):
    """
    Calculate the maximum evapotranspiration (ETx) using the crop coefficient (Kc) and reference evapotranspiration (ETo).

    Parameters:
    Kc (float): Crop coefficient
    ETo (float): Reference evapotranspiration (mm)

    Returns:
    float: Maximum evapotranspiration (ETx) in mm
    """
    ETx = Kc * ETo
    return ETx

def calculate_ETa(ETx, soil_moisture, field_capacity, wilting_point):
    """
    Calculate the actual evapotranspiration (ETa) using the maximum evapotranspiration (ETx), soil moisture, field capacity, and wilting point.

    Parameters:
    ETx (float): Maximum evapotranspiration (mm)
    soil_moisture (float): Current soil moisture content (%)
    field_capacity (float): Field capacity of the soil (%)
    wilting_point (float): Wilting point of the soil (%)

    Returns:
    float: Actual evapotranspiration (ETa) in mm
    """
    if soil_moisture > field_capacity:
        ETa = ETx
    elif soil_moisture < wilting_point:
        ETa = 0
    else:
        ETa = ETx * ((soil_moisture - wilting_point) / (field_capacity - wilting_point))
    
    return ETa


def calculate_yield_projection(Yx, ETx, ETa, Ky):
    """
    Calculate the agricultural yield projection using the FAO water production function.

    Parameters:
    Yx (float): Maximum yield (quintal/ha)
    ETx (float): Maximum evapotranspiration (mm)
    ETa (float): Actual evapotranspiration (mm)
    Ky (float): Yield response factor

    Returns:
    float: Projected yield (quintal/ha)
    """

    Ya = Yx * (1 - Ky * (1 - ETa / ETx))
    Ya.loc[ETx == 0] = 0

    return round(Ya, 2)


def add_cultural_coefs(monthly_forecast: pd.DataFrame, cultural_coefs: pd.DataFrame) -> pd.DataFrame:
    monthly_forecast["Kc"] = 0
    monthly_forecast["Ky"] = 0
    for month in range(1, 13):
        Kc = cultural_coefs["Kc"][cultural_coefs.Mois == month].iloc[0]
        Ky = cultural_coefs["Ky"][cultural_coefs.Mois == month].iloc[0]
        monthly_forecast.loc[(monthly_forecast.month==month).to_numpy(), "Kc"] = Kc
        monthly_forecast.loc[(monthly_forecast.month==month).to_numpy(), "Ky"] = Ky
    return monthly_forecast


def compute_yield_forecast(
        latitude: float,
        longitude: float,
        culture: str = "Colza d'hiver",
        region: str = "Bourgogne-Franche-Comté",
        scenario: str = "pessimist",
        shading_coef: float = 0.,
):
    monthly_forecast = get_forecast_data(latitude, longitude, scenario=scenario, shading_coef=shading_coef)

    cultural_coefs, max_yield = get_coefs_Kc_Ky_and_max_yield(culture, region)
    monthly_forecast = add_cultural_coefs(monthly_forecast, cultural_coefs)
    Kc = monthly_forecast["Kc"]
    Ky = monthly_forecast["Ky"]

    soil_properties = get_soil_properties(latitude, longitude)

    ETo = monthly_forecast["Evaporation (including sublimation and transpiration) (kg m-2 s-1)"]

    ETx = calculate_ETx(Kc, ETo)

    ETa = calculate_ETa(
        ETx,
        soil_properties["soil_moisture"],
        soil_properties["field_capacity"],
        soil_properties["wilting_point"],
    )

    projected_yield = calculate_yield_projection(
        Yx=max_yield,
        ETx=ETx,
        ETa=ETa,
        Ky=Ky)
    monthly_forecast["Estimated yield (quintal/ha)"] = projected_yield

    return monthly_forecast


def get_annual_yield(monthly_forecast: pd.DataFrame) -> pd.Series:
    yield_forecast = pd.Series(
        index=monthly_forecast["time"],
        data=monthly_forecast["Estimated yield (quintal/ha)"].to_numpy(),
    )
    yield_forecast = yield_forecast.resample("1YE").mean()
    return yield_forecast


if __name__ == '__main__':
    monthly_forecast = compute_yield_forecast(
        latitude=47,
        longitude=5,
        culture="Colza d'hiver",
        scenario="pessimist",
        shading_coef=0.,
    )
    print(monthly_forecast.head())

    yield_forecast = get_annual_yield(monthly_forecast)
    print(yield_forecast)