File size: 4,732 Bytes
61e4fc2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
import pandas as pd  # stress hydrique and rendement, besoin en eau
import plotly.graph_objects as go
from typing import List
import plotly.express as px
from fuzzywuzzy import process
from data_pipelines.historical_weather_data import (
    download_historical_weather_data,
    aggregate_hourly_weather_data,
)

def concatenate_historic_forecast(historic, forecast, cols_to_keep):
    historic["period"] = "historique"
    forecast["period"] = "futur"
    historic = historic[cols_to_keep]
    forecast = forecast[cols_to_keep]
    full_data = pd.concat([historic, forecast])
    return full_data


def visualize_climate(
    moderate: pd.DataFrame,
    historic: pd.DataFrame,
    x_axis="year",
    column: str = "Precipitation (mm)",
    cols_to_keep: List[str] = [
        "Precipitation (mm)",
        "Near Surface Air Temperature (°C)",
        "Surface Downwelling Shortwave Radiation (W/m²)",
        "year",
        "period",
    ],
):
    concatenated_df = concatenate_historic_forecast(historic, moderate, cols_to_keep)
    concatenated_df = concatenated_df.sort_values(by=x_axis)  # Ensure order

    fig = go.Figure()
    # colors = {"historique": "blue", "forecast": "purple"}

    for condition_value in concatenated_df["period"].unique():
        segment = concatenated_df[concatenated_df["period"] == condition_value]
        fig.add_trace(
            go.Scatter(
                x=segment[x_axis],
                y=segment[column],
                mode="lines",
                name=f"{condition_value}",
                line=dict(color="blue" if condition_value == "futur" else "purple"),
            )
        )

    interpolation_df = concatenated_df[concatenated_df[x_axis] > 2023]
    fig.add_trace(
        go.Scatter(
            x=interpolation_df[x_axis],
            y=interpolation_df[column].interpolate(),
            mode="lines",
            line=dict(color="blue"),
            showlegend=False,
        ),
    )

    fig.update_layout(
        title=f"Historique et Forecast pour {column}",
        xaxis_title="Date",
        yaxis_title=column,
    )

    return fig


def aggregate_yearly(df, col_to_agg):
    df[col_to_agg] = df.groupby("year")[col_to_agg].transform("mean")
    return df


def generate_plots(
    moderate: pd.DataFrame,
    historic: pd.DataFrame,
    x_axes: List[str],
    cols_to_plot: List[str],
):
    plots = []
    for i, col in enumerate(cols_to_plot):
        plots.append(visualize_climate(moderate, historic, x_axes[i], col))
    return plots

if __name__ == "__main__":
    cols_to_keep = [
        "Precipitation (mm)",
        "Near Surface Air Temperature (°C)",
        "Surface Downwelling Shortwave Radiation (W/m²)",
        "year",
        "period",
    ]
    cols_to_plot = [
        "Precipitation (mm)",
        "Near Surface Air Temperature (°C)",
        "Surface Downwelling Shortwave Radiation (W/m²)",
    ]
    x_axes = ["year"] * len(cols_to_plot)

    latitude = 47
    longitude = 5
    start_year = 2000
    end_year = 2025
    cols_to_keep = [
        "Precipitation (mm)",
        "Near Surface Air Temperature (°C)",
        "Surface Downwelling Shortwave Radiation (W/m²)",
        "year",
        "period",
    ]
    cols_to_plot = [
        "Precipitation (mm)",
        "Near Surface Air Temperature (°C)",
        "Surface Downwelling Shortwave Radiation (W/m²)",
    ]
    x_axes = ["year"] * len(cols_to_plot)

    df = download_historical_weather_data(latitude, longitude, start_year, end_year)
    historic = aggregate_hourly_weather_data(df)
    historic = historic.reset_index()
    historic = historic.rename(
        columns={
            "precipitation": "Precipitation (mm)",
            "air_temperature_mean": "Near Surface Air Temperature (°C)",
            "irradiance": "Surface Downwelling Shortwave Radiation (W/m²)",
            "index": "time",
        }
    )
    historic["time"] = pd.to_datetime(historic["time"])
    historic = historic.sort_values("time")
    historic = historic[historic["time"] < "2025-01-01"]
    climate_data_path = "data/data_climate_test/final_climate_data.csv" # will use a similar func to download_historical_weather_data
    moderate = pd.read_csv(climate_data_path)
    moderate["time"] = pd.to_datetime(moderate["time"])
    moderate = moderate.sort_values("time")
    moderate["year"] = moderate["time"].dt.year
    historic["year"] = historic["time"].dt.year
    moderate["Precipitation (mm)"] = moderate["Precipitation (mm)"] * 3600
    for col in cols_to_plot:
        moderate = aggregate_yearly(moderate, col)
        historic = aggregate_yearly(historic, col)


    plots = generate_plots(moderate, historic, x_axes, cols_to_plot) # List of 3 plots to show