Spaces:
Runtime error
Runtime error
import os | |
import pandas as pd | |
import pandas as pd | |
import numpy as np | |
from forecast import get_forecast_datasets, get_forecast_data | |
from data_pipelines.historical_weather_data import download_historical_weather_data, aggregate_hourly_weather_data | |
from utils.summary import get_meterological_summary, get_agricultural_yield_comparison | |
def get_meterological_past_data(): | |
download_historical_weather_data(latitude, longitude, start_year, end_year) | |
def process_all_data_for_meterological_summary(scenario: str, lat: float = 47.0, lon:float = 5.0): | |
start_year, end_year = 2010, 2025 | |
historical_df = aggregate_hourly_weather_data(download_historical_weather_data(latitude=lat, longitude=lon, start_year=start_year, end_year= end_year)) | |
forecast_df = get_forecast_data(scenario=scenario, longitude=lon, latitude=lat, shading_coef=0) | |
forecast_df["time"] = pd.to_datetime(forecast_df["time"]) | |
forecast_df['year'] = forecast_df["time"].dt.year | |
new_forecast_df = forecast_df.groupby(by="year", as_index=False)[["Near Surface Air Temperature (°C)", "Surface Downwelling Shortwave Radiation (W/m²)", "Precipitation (kg m-2 s-1)"]].mean().reset_index() | |
# new_forecast_df = new_forecast_df[new_forecast_df["year"] > 2025] | |
historical_df = historical_df.reset_index().rename(columns={"index": "time"}).sort_values(by="time") | |
historical_df["year"] = historical_df["time"].dt.year | |
historical_df["precipitation"] = historical_df["precipitation"] / 3600 # to transform the data to kg m2 per s | |
new_historical_df = historical_df.groupby(by="year", as_index=False)[["air_temperature_mean", "irradiance", "precipitation"]].mean().reset_index() | |
new_historical_df = new_historical_df[new_historical_df["year"] < 2024] | |
temperature_df = pd.concat([new_historical_df[["year", "air_temperature_mean"]].rename(columns={"air_temperature_mean": "Near Surface Air Temperature (°C)"}), | |
new_forecast_df[["year", "Near Surface Air Temperature (°C)"]]], axis=0) | |
irradiance_df = pd.concat([new_historical_df[["year", "irradiance"]].rename(columns={"irradiance": "Surface Downwelling Shortwave Radiation (W/m²)"}), | |
new_forecast_df[["year", "Surface Downwelling Shortwave Radiation (W/m²)"]]], axis=0) | |
rain_df = pd.concat([new_historical_df[["year", "precipitation"]].rename(columns={"precipitation": "Precipitation (kg m-2 s-1)"}), | |
new_forecast_df[["year", "Precipitation (kg m-2 s-1)"]]], axis=0) | |
return temperature_df, rain_df, irradiance_df | |
if __name__ == "__main__": | |
scenario = "pessimist" | |
lat, lon = 47.0, 5.0 | |
temperature_df, rain_df, irradiance_df = process_all_data_for_meterological_summary(scenario, lat, lon) | |
meterological_summary = get_meterological_summary(scenario=scenario, | |
temperature_df=temperature_df, | |
irradiance_df=irradiance_df, | |
rain_df=rain_df) | |
print(meterological_summary) | |
# from utils.soil_utils import find_nearest_point | |
# city = "Bourgogne Franche Comté" | |
# closest_soil_features = find_nearest_point(city) | |
# print(closest_soil_features) | |
# Example usage | |
# import pandas as pd | |
# import numpy as np | |
# from utils.soil_utils import find_nearest_point | |
# city = "Bourgogne Franche Comté" | |
# closest_soil_features = find_nearest_point(city) | |
# print(closest_soil_features) | |
# # Définir la période de 4 ans dans le passé + 15 ans dans le futur (19 ans) | |
# start_date = "2010-01" | |
# end_date = "2029-12" | |
# # Générer une série de dates mensuelles | |
# dates = pd.date_range(start=start_date, end=end_date, freq='M') | |
# Générer une série de dates mensuelles | |
# dates = pd.date_range(start=start_date, end=end_date, freq="M") | |
# # Générer des données fictives de rendement (en tonnes par hectare) | |
# np.random.seed(42) # Pour reproductibilité | |
# # Tendance générale du rendement sans ombrage (augmentation progressive) | |
# trend = np.linspace(2.5, 3.2, len(dates)) # Augmente légèrement sur les années | |
# # Ajout de variations saisonnières et aléatoires | |
# seasonality = 0.3 * np.sin(np.linspace(0, 12 * np.pi, len(dates))) # Effet saisonnier | |
# random_variation = np.random.normal(0, 0.1, len(dates)) # Bruit aléatoire | |
# # Calcul du rendement sans ombrage | |
# yield_no_shade = trend + seasonality + random_variation | |
# # Appliquer un effet d'ombrage (réduction de 10-20% du rendement) | |
# shade_factor = np.random.uniform(0.1, 0.2, len(dates)) # Entre 10% et 20% de réduction | |
# yield_with_shade = yield_no_shade * (1 - shade_factor) | |
# # Créer le DataFrame | |
# df = pd.DataFrame({ | |
# "date": dates, | |
# "yield_no_shade": yield_no_shade, | |
# "yield_with_shade": yield_with_shade | |
# }) | |
# water_deficit_data = pd.DataFrame() | |
# climate_data = pd.DataFrame() | |
# print(get_agricultural_yield_comparison(culture="orge", | |
# region="bourgogne franche comté", | |
# water_df=water_deficit_data, | |
# climate_df=climate_data, | |
# soil_df=closest_soil_features, | |
# agri_yield_df=df)) | |