gaia / compute_yield.py
Hugo Massonnat
fix yield computation
8ff070c
raw
history blame
4.95 kB
import pandas as pd
from matplotlib import pyplot as plt
from forecast import get_forecast_data
from retrieve_coefs_max_yield import get_coefs_Kc_Ky_and_max_yield
from utils.soil_utils import get_soil_properties
def calculate_ETx(Kc, ETo):
"""
Calculate the maximum evapotranspiration (ETx) using the crop coefficient (Kc) and reference evapotranspiration (ETo).
Parameters:
Kc (float): Crop coefficient
ETo (float): Reference evapotranspiration (mm)
Returns:
float: Maximum evapotranspiration (ETx) in mm
"""
ETx = Kc * ETo
return ETx
def calculate_ETa(ETx, soil_moisture, field_capacity, wilting_point, water_deficit, ETo):
"""
Calculate the actual evapotranspiration (ETa) using the maximum evapotranspiration (ETx), soil moisture, field capacity, and wilting point.
Parameters:
ETx (float): Maximum evapotranspiration (mm)
soil_moisture (Series): Current soil moisture content (%)
field_capacity (float): Field capacity of the soil (%)
wilting_point (float): Wilting point of the soil (%)
Returns:
float: Actual evapotranspiration (ETa) in mm
"""
Ks = 1 - (water_deficit / (2 * ETo)) # coef de stress hydrique = precipitation / et0
Ks = Ks.clip(lower=0, upper=1)
ETa = ETx * Ks
ETa.loc[soil_moisture > field_capacity] = ETx.loc[soil_moisture > field_capacity]
ETa.loc[soil_moisture < wilting_point] = 0
return ETa
def calculate_yield_projection(Yx, ETx, ETa, Ky):
"""
Calculate the agricultural yield projection using the FAO water production function.
Parameters:
Yx (float): Maximum yield (quintal/ha)
ETx (float): Maximum evapotranspiration (mm)
ETa (float): Actual evapotranspiration (mm)
Ky (float): Yield response factor
Returns:
float: Projected yield (quintal/ha)
"""
Ya = Yx * (1 - Ky * (1 - ETa / ETx))
Ya.loc[ETx == 0] = 0
return round(Ya, 2)
def add_cultural_coefs(monthly_forecast: pd.DataFrame, cultural_coefs: pd.DataFrame) -> pd.DataFrame:
monthly_forecast["Kc"] = 0
monthly_forecast["Ky"] = 0
for month in range(1, 13):
Kc = cultural_coefs["Kc"][cultural_coefs.Mois == month].iloc[0]
Ky = cultural_coefs["Ky"][cultural_coefs.Mois == month].iloc[0]
monthly_forecast.loc[(monthly_forecast.month==month).to_numpy(), "Kc"] = Kc
monthly_forecast.loc[(monthly_forecast.month==month).to_numpy(), "Ky"] = Ky
return monthly_forecast
def compute_yield_forecast(
latitude: float,
longitude: float,
culture: str = "Colza d'hiver",
region: str = "Bourgogne-Franche-Comté",
scenario: str = "pessimist",
shading_coef: float = 0.,
):
monthly_forecast = get_forecast_data(latitude, longitude, scenario=scenario, shading_coef=shading_coef)
cultural_coefs, max_yield = get_coefs_Kc_Ky_and_max_yield(culture, region)
monthly_forecast = add_cultural_coefs(monthly_forecast, cultural_coefs)
Kc = monthly_forecast["Kc"]
Ky = monthly_forecast["Ky"]
soil_properties = get_soil_properties(latitude, longitude)
ETo = monthly_forecast["Evaporation (mm/day)"]
ETx = calculate_ETx(Kc, ETo)
ETa = calculate_ETa(
ETx,
monthly_forecast["Moisture in Upper Portion of Soil Column (kg m-2)"],
soil_properties["field_capacity"],
soil_properties["wilting_point"],
water_deficit=monthly_forecast["Water Deficit (mm/day)"],
ETo=ETo,
)
projected_yield = calculate_yield_projection(
Yx=max_yield,
ETx=ETx,
ETa=ETa,
Ky=Ky)
monthly_forecast["Estimated yield (quintal/ha)"] = projected_yield
return monthly_forecast
def get_annual_yield(monthly_forecast: pd.DataFrame) -> pd.Series:
yield_forecast = pd.Series(
index=monthly_forecast["time"],
data=monthly_forecast["Estimated yield (quintal/ha)"].to_numpy(),
)
yield_forecast = yield_forecast.resample("1YE").mean()
return yield_forecast
if __name__ == '__main__':
culture = "Colza d'hiver"
scenario = "pessimist"
shading_coef = 0.2
monthly_forecast = compute_yield_forecast(
latitude=47,
longitude=5,
culture=culture,
scenario=scenario,
shading_coef=0.,
)
# print(monthly_forecast.head())
yield_forecast = get_annual_yield(monthly_forecast)
# print(yield_forecast)
monthly_forecast_with_shading = compute_yield_forecast(
latitude=47,
longitude=5,
culture=culture,
scenario=scenario,
shading_coef=shading_coef,
)
# print(monthly_forecast_with_shading.head())
yield_forecast_with_shading = get_annual_yield(monthly_forecast_with_shading)
# print(yield_forecast)
plt.plot(yield_forecast.rolling(5).mean(), label="No shading")
plt.plot(yield_forecast_with_shading.rolling(5).mean(), label="20% Shading")
plt.legend()
plt.show()