gaia / summary_test.py
AliceTt's picture
fixed dropdown
db975c4
import os
import pandas as pd
import pandas as pd
import numpy as np
from forecast import get_forecast_datasets, get_forecast_data
from data_pipelines.historical_weather_data import (
download_historical_weather_data,
aggregate_hourly_weather_data,
)
from utils.soil_utils import find_nearest_point_to_coordinates
from utils.summary import get_meterological_summary, get_agricultural_yield_comparison
def get_meterological_past_data():
download_historical_weather_data(latitude, longitude, start_year, end_year)
def pre_process_data(scenario: str, lat: float = 47.0, lon: float = 5.0):
start_year, end_year = 2010, 2025
historical_df = aggregate_hourly_weather_data(
download_historical_weather_data(
latitude=lat, longitude=lon, start_year=start_year, end_year=end_year
)
)
forecast_df = get_forecast_data(
scenario=scenario, longitude=lon, latitude=lat, shading_coef=0
)
forecast_df["time"] = pd.to_datetime(forecast_df["time"])
forecast_df["year"] = forecast_df["time"].dt.year
new_forecast_df = (
forecast_df.groupby(by="year", as_index=False).mean().reset_index()
)
# new_forecast_df = new_forecast_df[new_forecast_df["year"] > 2025]
historical_df = (
historical_df.reset_index()
.rename(columns={"index": "time"})
.sort_values(by="time")
)
historical_df["year"] = historical_df["time"].dt.year
historical_df["precipitation"] = (
historical_df["precipitation"] / 3600
) # to transform the data to kg m2 per s
new_historical_df = (
historical_df.groupby(by="year", as_index=False).mean().reset_index()
)
new_historical_df = new_historical_df[new_historical_df["year"] < 2024]
return new_historical_df, new_forecast_df
def process_all_data_for_meterological_summary(
historical_data: pd.DataFrame, forecast_data: pd.DataFrame
):
temperature_df = pd.concat(
[
historical_data[["year", "air_temperature_mean"]].rename(
columns={"air_temperature_mean": "Near Surface Air Temperature (°C)"}
),
forecast_data[["year", "Near Surface Air Temperature (°C)"]],
],
axis=0,
)
irradiance_df = pd.concat(
[
historical_data[["year", "irradiance"]].rename(
columns={"irradiance": "Surface Downwelling Shortwave Radiation (W/m²)"}
),
forecast_data[["year", "Surface Downwelling Shortwave Radiation (W/m²)"]],
],
axis=0,
)
rain_df = pd.concat(
[
historical_data[["year", "precipitation"]].rename(
columns={"precipitation": "Precipitation (kg m-2 s-1)"}
),
forecast_data[["year", "Precipitation (kg m-2 s-1)"]],
],
axis=0,
)
return temperature_df, rain_df, irradiance_df
def get_yield_data(
region: str = "Bourgogne-Franche-Comté", culture: str = "Blé tendre d'hiver"
):
yield_past_data = pd.read_csv("data/data_yield/data_rendement.csv")
# yield_forecast_data = pd.read_csv("data/data_yield/data_rendement.csv")
yield_past_data = yield_past_data[
(yield_past_data["LIB_REG2"] == region)
& (yield_past_data["LIB_SAA"].str.contains("Colza grain d'hiver"))
]
yield_past_data = yield_past_data[
["LIB_REG2", "LIB_SAA"]
+ [col for col in yield_past_data.columns if "REND" in col]
]
# Transformation
yield_past_data = yield_past_data.melt(
id_vars=["LIB_REG2", "LIB_SAA"], var_name="year", value_name="past_yield"
)
# Nettoyer la colonne "temps" pour enlever "REND_"
yield_past_data["year"] = (
yield_past_data["year"].str.replace("REND_", "").astype(int)
)
yield_forecast_data = pd.read_csv("data/data_yield/rendement_forecast.csv")
yield_forecast_data = yield_forecast_data[
yield_forecast_data["culture"].str.contains(culture)
]
return (
yield_past_data[["year", "past_yield"]],
yield_forecast_data[
["year", "yield_simple_forecast", "yield_with_shading_forecast"]
],
)
def get_summaries():
scenario = "pessimist"
lat, lon = 47.0, 5.0
culture = "Colza d'hiver"
region = "Bourgogne-Franche-Comté"
historical_df, forecast_df = pre_process_data(scenario, lat, lon)
temperature_df, rain_df, irradiance_df = process_all_data_for_meterological_summary(
historical_df, forecast_df
)
#######@
meterological_summary = get_meterological_summary(
scenario=scenario,
temperature_df=temperature_df,
irradiance_df=irradiance_df,
rain_df=rain_df,
)
print(meterological_summary)
climate_data = temperature_df.merge(rain_df, on="year").merge(
irradiance_df, on="year"
) # meteo ok
closest_soil_data = find_nearest_point_to_coordinates(
latitude=lat, longitude=lon
) # soil ok
water_deficit_data = forecast_df[["year", "Water Deficit (mm/day)"]]
############ forecast data PV ############
forecast_df_pv = get_forecast_data(
scenario=scenario, longitude=lon, latitude=lat, shading_coef=0.2
)
forecast_df_pv["time"] = pd.to_datetime(forecast_df_pv["time"])
forecast_df_pv["year"] = forecast_df_pv["time"].dt.year
water_deficit_data_pv = (
forecast_df_pv.groupby(by="year", as_index=False)
.mean()
.reset_index()[["year", "Water Deficit (mm/day)"]]
)
# add a step to transform gps coordinates into french region to be able to filter yield data
yield_past_data, yield_forecast_data = get_yield_data(
region=region, culture=culture
)
print(yield_forecast_data.tail())
# rendement (avec et sans ombrage)
second_summary = get_agricultural_yield_comparison(
culture=culture,
region="bourgogne franche comté",
water_df=water_deficit_data,
water_df_pv=water_deficit_data_pv,
climate_df=climate_data,
soil_df=closest_soil_data,
forecast_yield_df=yield_forecast_data,
historical_yield_df=yield_past_data,
)
print(yield_forecast_data.tail())
print(second_summary)
return meterological_summary, second_summary
# from utils.soil_utils import find_nearest_point
# city = "Bourgogne Franche Comté"
# closest_soil_features = find_nearest_point(city)
# print(closest_soil_features)
# Example usage
# import pandas as pd
# import numpy as np
# from utils.soil_utils import find_nearest_point
# city = "Bourgogne Franche Comté"
# closest_soil_features = find_nearest_point(city)
# print(closest_soil_features)
# # Définir la période de 4 ans dans le passé + 15 ans dans le futur (19 ans)
# start_date = "2010-01"
# end_date = "2029-12"
# # Générer une série de dates mensuelles
# dates = pd.date_range(start=start_date, end=end_date, freq='M')
# Générer une série de dates mensuelles
# dates = pd.date_range(start=start_date, end=end_date, freq="M")
# # Générer des données fictives de rendement (en tonnes par hectare)
# np.random.seed(42) # Pour reproductibilité
# # Tendance générale du rendement sans ombrage (augmentation progressive)
# trend = np.linspace(2.5, 3.2, len(dates)) # Augmente légèrement sur les années
# # Ajout de variations saisonnières et aléatoires
# seasonality = 0.3 * np.sin(np.linspace(0, 12 * np.pi, len(dates))) # Effet saisonnier
# random_variation = np.random.normal(0, 0.1, len(dates)) # Bruit aléatoire
# # Calcul du rendement sans ombrage
# yield_no_shade = trend + seasonality + random_variation
# # Appliquer un effet d'ombrage (réduction de 10-20% du rendement)
# shade_factor = np.random.uniform(0.1, 0.2, len(dates)) # Entre 10% et 20% de réduction
# yield_with_shade = yield_no_shade * (1 - shade_factor)
# # Créer le DataFrame
# df = pd.DataFrame({
# "date": dates,
# "yield_no_shade": yield_no_shade,
# "yield_with_shade": yield_with_shade
# })
# water_deficit_data = pd.DataFrame()
# climate_data = pd.DataFrame()
# print(get_agricultural_yield_comparison(culture="orge",
# region="bourgogne franche comté",
# water_df=water_deficit_data,
# climate_df=climate_data,
# soil_df=closest_soil_features,
# agri_yield_df=df))