Spaces:
Runtime error
Runtime error
Hugo Massonnat
commited on
Commit
·
4b837f2
1
Parent(s):
b5f210c
add precipitation to historic data
Browse files
data_pipelines/historical_weather_data.py
CHANGED
@@ -1,7 +1,8 @@
|
|
1 |
import openmeteo_requests
|
2 |
|
3 |
-
import
|
4 |
import pandas as pd
|
|
|
5 |
from retry_requests import retry
|
6 |
|
7 |
from compute_et0_adjusted import compute_et0
|
@@ -77,7 +78,9 @@ def aggregate_hourly_weather_data(
|
|
77 |
"temperature_2m": ["min", "max"],
|
78 |
"relative_humidity_2m": ["min", "max"],
|
79 |
"wind_speed_10m": "mean",
|
|
|
80 |
"shortwave_radiation": "mean",
|
|
|
81 |
})
|
82 |
|
83 |
monthly_data = pd.DataFrame.from_dict({
|
@@ -86,8 +89,10 @@ def aggregate_hourly_weather_data(
|
|
86 |
"air_temperature_max": resampled_data[("temperature_2m", "max")],
|
87 |
"relative_humidity_min": resampled_data[("relative_humidity_2m", "min")],
|
88 |
"relative_humidity_max": resampled_data[("relative_humidity_2m", "max")],
|
|
|
89 |
"wind_speed": resampled_data[("wind_speed_10m", "mean")],
|
90 |
"irradiance": resampled_data[("shortwave_radiation", "mean")],
|
|
|
91 |
})
|
92 |
|
93 |
return monthly_data
|
@@ -96,10 +101,14 @@ def aggregate_hourly_weather_data(
|
|
96 |
if __name__ == '__main__':
|
97 |
latitude = 47
|
98 |
longitude = 3
|
99 |
-
start_year =
|
100 |
-
end_year =
|
101 |
df = download_historical_weather_data(latitude, longitude, start_year, end_year)
|
102 |
monthly_df = aggregate_hourly_weather_data(df)
|
103 |
|
104 |
et0 = compute_et0(monthly_df, latitude, longitude)
|
105 |
-
|
|
|
|
|
|
|
|
|
|
1 |
import openmeteo_requests
|
2 |
|
3 |
+
import matplotlib.pyplot as plt
|
4 |
import pandas as pd
|
5 |
+
import requests_cache
|
6 |
from retry_requests import retry
|
7 |
|
8 |
from compute_et0_adjusted import compute_et0
|
|
|
78 |
"temperature_2m": ["min", "max"],
|
79 |
"relative_humidity_2m": ["min", "max"],
|
80 |
"wind_speed_10m": "mean",
|
81 |
+
"precipitation": "mean",
|
82 |
"shortwave_radiation": "mean",
|
83 |
+
"et0_fao_evapotranspiration": "mean",
|
84 |
})
|
85 |
|
86 |
monthly_data = pd.DataFrame.from_dict({
|
|
|
89 |
"air_temperature_max": resampled_data[("temperature_2m", "max")],
|
90 |
"relative_humidity_min": resampled_data[("relative_humidity_2m", "min")],
|
91 |
"relative_humidity_max": resampled_data[("relative_humidity_2m", "max")],
|
92 |
+
"precipitation": resampled_data[("precipitation", "mean")],
|
93 |
"wind_speed": resampled_data[("wind_speed_10m", "mean")],
|
94 |
"irradiance": resampled_data[("shortwave_radiation", "mean")],
|
95 |
+
"et0_fao_evapotranspiration": resampled_data[("et0_fao_evapotranspiration", "mean")],
|
96 |
})
|
97 |
|
98 |
return monthly_data
|
|
|
101 |
if __name__ == '__main__':
|
102 |
latitude = 47
|
103 |
longitude = 3
|
104 |
+
start_year = 2000
|
105 |
+
end_year = 2024
|
106 |
df = download_historical_weather_data(latitude, longitude, start_year, end_year)
|
107 |
monthly_df = aggregate_hourly_weather_data(df)
|
108 |
|
109 |
et0 = compute_et0(monthly_df, latitude, longitude)
|
110 |
+
monthly_df["et0"] = et0
|
111 |
+
|
112 |
+
plt.plot(monthly_df["et0_fao_evapotranspiration"] * 100)
|
113 |
+
plt.plot(monthly_df["et0"] + 5)
|
114 |
+
plt.show()
|
requirements.txt
CHANGED
@@ -17,4 +17,5 @@ requests_cache
|
|
17 |
retry_requests
|
18 |
fuzzywuzzy
|
19 |
plotly
|
20 |
-
pvlib
|
|
|
|
17 |
retry_requests
|
18 |
fuzzywuzzy
|
19 |
plotly
|
20 |
+
pvlib
|
21 |
+
matplotlib
|