Spaces:
Runtime error
Runtime error
addded some docs for indicators
Browse files- docs/agro_indicators.py +165 -0
- docs/animal_indicators.py +30 -0
- docs/climatic_indicators.py +106 -0
- docs/compute.py +319 -0
- docs/pyeto/__init__.py +94 -0
- docs/pyeto/_check.py +76 -0
- docs/pyeto/convert.py +52 -0
- docs/pyeto/fao.py +735 -0
- docs/pyeto/thornthwaite.py +119 -0
- docs/request_data.py +65 -0
docs/agro_indicators.py
ADDED
@@ -0,0 +1,165 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
from pvlib.location import lookup_altitude
|
3 |
+
from agroclimatic_indicators.pyeto import fao
|
4 |
+
|
5 |
+
def et0(irradiance, T, Tmax, Tmin, RHmin, RHmax, WS, JJulien, latitude, longitude):
|
6 |
+
"""
|
7 |
+
Calculate the daily reference evapotranspiration [ml/day] w.r.t. Penman-Monteith formula.
|
8 |
+
|
9 |
+
Parameters
|
10 |
+
----------
|
11 |
+
irradiance : array_like
|
12 |
+
Daily global horizontal irradiance [MJ/m2/day].
|
13 |
+
|
14 |
+
T : array_like
|
15 |
+
Mean daily air temperature at 2 m height [deg Celsius].
|
16 |
+
|
17 |
+
Tmax : array_like
|
18 |
+
Maximum air temperature at 2 m height [deg Celsius].
|
19 |
+
|
20 |
+
Tmin : array_like
|
21 |
+
Minimum air temperature at 2 m height [deg Celsius].
|
22 |
+
|
23 |
+
RHmin : array_like
|
24 |
+
Minimum daily relative humidity [%].
|
25 |
+
|
26 |
+
RHmax : array_like
|
27 |
+
Maximum daily relative humidity [%].
|
28 |
+
|
29 |
+
WS : array_like
|
30 |
+
Wind speed at 10 m height [m s-1].
|
31 |
+
|
32 |
+
JJulien : array_like
|
33 |
+
Julian day.
|
34 |
+
|
35 |
+
latitude : array_like
|
36 |
+
Latitude in °.
|
37 |
+
|
38 |
+
longitude : array_like
|
39 |
+
Longitude in °.
|
40 |
+
|
41 |
+
Returns
|
42 |
+
-------
|
43 |
+
array_like
|
44 |
+
Reference evapotranspiration (ETo) from a hypothetical grass reference surface [mm day-1].
|
45 |
+
"""
|
46 |
+
|
47 |
+
latRad = (latitude * np.pi) / 180
|
48 |
+
### VPD, SVP
|
49 |
+
|
50 |
+
svp_tmax = fao.svp_from_t(Tmax)
|
51 |
+
svp_tmin = fao.svp_from_t(Tmin)
|
52 |
+
svp = fao.svp_from_t(T)
|
53 |
+
avp = fao.avp_from_rhmin_rhmax(svp_tmin, svp_tmax, RHmin, RHmax)
|
54 |
+
delta_svp = fao.delta_svp(T)
|
55 |
+
|
56 |
+
### IR
|
57 |
+
|
58 |
+
#sol_rad = irradiance * 36 / 10000 #Conversion W/m2 en MJ/m2/day
|
59 |
+
sol_rad = irradiance
|
60 |
+
|
61 |
+
### Radiation Nette
|
62 |
+
|
63 |
+
sol_dec = fao.sol_dec(JJulien)
|
64 |
+
sunset_hour_angle = fao.sunset_hour_angle(latRad, sol_dec)
|
65 |
+
inv_dist_earth_sun = fao.inv_rel_dist_earth_sun(JJulien)
|
66 |
+
|
67 |
+
et_rad = fao.et_rad(latRad, sol_dec, sunset_hour_angle, inv_dist_earth_sun)
|
68 |
+
|
69 |
+
T_kelvin = T + 273.15
|
70 |
+
Tmin_kelvin = Tmin + 273.15
|
71 |
+
Tmax_kelvin = Tmax + 273.15
|
72 |
+
|
73 |
+
altitude = np.array(lookup_altitude(latitude, longitude))
|
74 |
+
|
75 |
+
cs_rad = fao.cs_rad(altitude, et_rad)
|
76 |
+
|
77 |
+
net_out_lw_rad = fao.net_out_lw_rad(Tmin_kelvin, Tmax_kelvin, sol_rad, cs_rad, avp)
|
78 |
+
|
79 |
+
net_in_sol_rad = fao.net_in_sol_rad(sol_rad, 0.2)
|
80 |
+
|
81 |
+
net_rad = fao.net_rad(net_in_sol_rad, net_out_lw_rad)
|
82 |
+
|
83 |
+
atm_pressure = fao.atm_pressure(altitude)
|
84 |
+
|
85 |
+
psy = fao.psy_const_of_psychrometer(2, atm_pressure)
|
86 |
+
|
87 |
+
ws_2m = fao.wind_speed_2m(WS, 10)
|
88 |
+
|
89 |
+
et0 = fao.fao56_penman_monteith(net_rad, T_kelvin, ws_2m, svp, avp, delta_svp, psy)
|
90 |
+
|
91 |
+
return et0
|
92 |
+
|
93 |
+
|
94 |
+
def gdd(Tmin, Tmax, Tbase):
|
95 |
+
"""
|
96 |
+
Calculate the Growing Degree Days [Degrees Celsius].
|
97 |
+
|
98 |
+
Parameters
|
99 |
+
----------
|
100 |
+
Tmax : float or numpy array
|
101 |
+
Maximum daily air temperature [deg Celsius].
|
102 |
+
|
103 |
+
Tmin : float or numpy array
|
104 |
+
Minimum daily air temperature [deg Celsius].
|
105 |
+
|
106 |
+
Tbase : float or numpy array
|
107 |
+
Base crop temperature (corresponding to zero vegetation) [deg Celsius].
|
108 |
+
|
109 |
+
Returns
|
110 |
+
-------
|
111 |
+
float
|
112 |
+
Growing Degree Days [deg Celsius].
|
113 |
+
"""
|
114 |
+
|
115 |
+
return ((Tmax + Tmin) / 2) - Tbase
|
116 |
+
|
117 |
+
|
118 |
+
def gelif(Tmin, Tfrost):
|
119 |
+
"""
|
120 |
+
Define if the day is a frosting day.
|
121 |
+
|
122 |
+
Parameters
|
123 |
+
----------
|
124 |
+
Tmin : float or numpy array
|
125 |
+
Minimum daily air temperature [deg Celsius].
|
126 |
+
|
127 |
+
Tfrost : float
|
128 |
+
Crop frost temperature (depends on the crop and phenophase) [deg Celsius].
|
129 |
+
|
130 |
+
Returns
|
131 |
+
-------
|
132 |
+
bool
|
133 |
+
True if it's a frosting day, else False.
|
134 |
+
"""
|
135 |
+
|
136 |
+
if Tmin > Tfrost:
|
137 |
+
is_forst = False
|
138 |
+
elif Tmin <= Tfrost:
|
139 |
+
is_forst = True
|
140 |
+
|
141 |
+
return is_forst
|
142 |
+
|
143 |
+
|
144 |
+
def vpd(T, RH):
|
145 |
+
"""
|
146 |
+
Compute deficit vapor pressure.
|
147 |
+
|
148 |
+
Parameters
|
149 |
+
----------
|
150 |
+
T : float or numpy array
|
151 |
+
Mean timestep air temperature [deg Celsius].
|
152 |
+
|
153 |
+
RH : float or numpy array
|
154 |
+
Mean timestep relative humidity [unitless %].
|
155 |
+
|
156 |
+
Returns
|
157 |
+
-------
|
158 |
+
float or numpy array
|
159 |
+
Vapor pressure deficit (VPD).
|
160 |
+
"""
|
161 |
+
|
162 |
+
VPS = 0.6108 * np.exp((17.27 * T) / (T + 237.3))
|
163 |
+
VPD = VPS * (1 - RH / 100)
|
164 |
+
|
165 |
+
return VPD
|
docs/animal_indicators.py
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
|
3 |
+
def hli(irradiance : float, air_temperature : float, RH : float, wind_speed : float):
|
4 |
+
"""
|
5 |
+
Compute Heat Load Index (HLI), a thermal stress indicator for animals.
|
6 |
+
|
7 |
+
Parameters
|
8 |
+
----------
|
9 |
+
irradiance : float
|
10 |
+
Solar radiation [W.m-2]
|
11 |
+
|
12 |
+
air_temperature : float
|
13 |
+
Air temperature [°C]
|
14 |
+
|
15 |
+
RH : float
|
16 |
+
Relative humidity [%]
|
17 |
+
|
18 |
+
wind_speed : float
|
19 |
+
Wind speed [m.s-1]
|
20 |
+
|
21 |
+
Returns
|
22 |
+
-------
|
23 |
+
float
|
24 |
+
Heat Load Index value.
|
25 |
+
"""
|
26 |
+
|
27 |
+
BGT = 0.01498*irradiance + 1.184*air_temperature - 0.0789*RH - 2.739
|
28 |
+
HLI = np.where(BGT >= 25, 1.55*BGT- 0.5*wind_speed + np.exp(2.4 - wind_speed)+8.62 + 0.38*RH, 1.30*BGT - wind_speed+10.66 + 0.28*RH)
|
29 |
+
|
30 |
+
return HLI
|
docs/climatic_indicators.py
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
def frost_bool(Tmin,Tfrost):
|
2 |
+
|
3 |
+
"""
|
4 |
+
Test if the day is a frost day (minimum daily temperature below frost threshold).
|
5 |
+
|
6 |
+
Parameters
|
7 |
+
----------
|
8 |
+
Tmin : float
|
9 |
+
Minimum daily air temperature (deg Celsius).
|
10 |
+
|
11 |
+
Tfrost : float
|
12 |
+
Frost temperature (regular or strong frost) (deg Celsius).
|
13 |
+
|
14 |
+
Returns
|
15 |
+
-------
|
16 |
+
bool
|
17 |
+
True if it's a frost day, else False.
|
18 |
+
"""
|
19 |
+
|
20 |
+
return Tmin <= Tfrost
|
21 |
+
|
22 |
+
|
23 |
+
|
24 |
+
|
25 |
+
def scorch_bool(Tmax,Tscorch):
|
26 |
+
|
27 |
+
"""
|
28 |
+
Test if the day is a scorching day (jour échaudant) (maximum daily temperature above scorch threshold).
|
29 |
+
|
30 |
+
Parameters
|
31 |
+
----------
|
32 |
+
Tmax : float
|
33 |
+
Maximum daily air temperature (deg Celsius).
|
34 |
+
|
35 |
+
Tscorch : float
|
36 |
+
Temperature threshold above which the day is considered scorching (crop-dependent) (deg Celsius).
|
37 |
+
|
38 |
+
Returns
|
39 |
+
-------
|
40 |
+
bool
|
41 |
+
True if it's a scorching day, else False.
|
42 |
+
"""
|
43 |
+
|
44 |
+
return Tmax >= Tscorch
|
45 |
+
|
46 |
+
|
47 |
+
|
48 |
+
def thermalstress_bool(Tmax, Tstress):
|
49 |
+
|
50 |
+
"""
|
51 |
+
Define if the day is a source of thermal stress (maximum daily temperature above stress threshold).
|
52 |
+
|
53 |
+
Parameters
|
54 |
+
----------
|
55 |
+
Tmax : float
|
56 |
+
Maximum daily air temperature (deg Celsius).
|
57 |
+
|
58 |
+
Tstress : float
|
59 |
+
Temperature threshold above which the day is considered stressful (deg Celsius).
|
60 |
+
|
61 |
+
Returns
|
62 |
+
-------
|
63 |
+
bool
|
64 |
+
True if the day is a source of thermal stress, else False.
|
65 |
+
"""
|
66 |
+
return Tmax >= Tstress
|
67 |
+
|
68 |
+
|
69 |
+
|
70 |
+
def summerday_bool(Tmax):
|
71 |
+
"""
|
72 |
+
Define if the day is a summer day (maximum daily temperature above 25°C).
|
73 |
+
|
74 |
+
Parameters
|
75 |
+
----------
|
76 |
+
Tmax : float
|
77 |
+
Maximum daily air temperature (deg Celsius).
|
78 |
+
|
79 |
+
Returns
|
80 |
+
-------
|
81 |
+
bool
|
82 |
+
True if it's a summer day, else False.
|
83 |
+
"""
|
84 |
+
|
85 |
+
return Tmax >= 25
|
86 |
+
|
87 |
+
|
88 |
+
def tropicalnight_bool(Tmin):
|
89 |
+
|
90 |
+
"""
|
91 |
+
Define if night is a tropical night (min night temperature above 20°).
|
92 |
+
|
93 |
+
Parameters
|
94 |
+
----------
|
95 |
+
Tmin : float
|
96 |
+
Min Night Air temperature (degrees Celsius).
|
97 |
+
|
98 |
+
Returns
|
99 |
+
-------
|
100 |
+
bool
|
101 |
+
True if tropical night, else False.
|
102 |
+
"""
|
103 |
+
|
104 |
+
return Tmin >= 20
|
105 |
+
|
106 |
+
|
docs/compute.py
ADDED
@@ -0,0 +1,319 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import pandas as pd
|
3 |
+
from pvlib.solarposition import sun_rise_set_transit_spa
|
4 |
+
from agroclimatic_indicators import (
|
5 |
+
agro_indicators,
|
6 |
+
animal_indicators,
|
7 |
+
climatic_indicators,
|
8 |
+
)
|
9 |
+
|
10 |
+
|
11 |
+
## Compute Agronomics
|
12 |
+
def compute_vpd(df: pd.DataFrame):
|
13 |
+
"""
|
14 |
+
Compute VPD.
|
15 |
+
|
16 |
+
Parameters
|
17 |
+
----------
|
18 |
+
df : DataFrame
|
19 |
+
The input dataframe containing sensor data.
|
20 |
+
|
21 |
+
Returns
|
22 |
+
-------
|
23 |
+
arraylike
|
24 |
+
VPD at df's timestep
|
25 |
+
"""
|
26 |
+
return agro_indicators.vpd(df.air_temperature, df.relative_humidity)
|
27 |
+
|
28 |
+
|
29 |
+
|
30 |
+
def compute_et0(
|
31 |
+
df: pd.DataFrame,
|
32 |
+
latitude: float,
|
33 |
+
longitude: float
|
34 |
+
):
|
35 |
+
"""
|
36 |
+
Compute reference evapotranspiration.
|
37 |
+
|
38 |
+
Parameters
|
39 |
+
----------
|
40 |
+
df : DataFrame
|
41 |
+
The input dataframe containing sensor data.
|
42 |
+
|
43 |
+
latitude : float
|
44 |
+
Latitude of the location.
|
45 |
+
longitude : float
|
46 |
+
Longitude of the location
|
47 |
+
|
48 |
+
Returns
|
49 |
+
-------
|
50 |
+
arraylike
|
51 |
+
Daily reference evapotranspiration.
|
52 |
+
"""
|
53 |
+
|
54 |
+
irradiance = (
|
55 |
+
(df.photon_flux_density.resample("1h").mean() / 2.1).resample("1d").sum()
|
56 |
+
)
|
57 |
+
T = df.air_temperature.resample("1d").mean()
|
58 |
+
Tmin = df.air_temperature.resample("1d").min()
|
59 |
+
Tmax = df.air_temperature.resample("1d").max()
|
60 |
+
RHmin = df.relative_humidity.resample("1d").min()
|
61 |
+
RHmax = df.relative_humidity.resample("1d").max()
|
62 |
+
WS = df.wind_speed.resample("1d").mean()
|
63 |
+
JJulien = np.unique(df.index.day_of_year)
|
64 |
+
|
65 |
+
l = [
|
66 |
+
agro_indicators.et0(
|
67 |
+
irradiance.iloc[i],
|
68 |
+
T.iloc[i],
|
69 |
+
Tmax.iloc[i],
|
70 |
+
Tmin.iloc[i],
|
71 |
+
RHmin.iloc[i],
|
72 |
+
RHmax.iloc[i],
|
73 |
+
WS.iloc[i],
|
74 |
+
JJulien[i],
|
75 |
+
latitude,
|
76 |
+
np.array([longitude]),
|
77 |
+
)
|
78 |
+
for i in range(len(JJulien))
|
79 |
+
]
|
80 |
+
|
81 |
+
if len(JJulien) == 1:
|
82 |
+
et0 = l[0]
|
83 |
+
else:
|
84 |
+
et0 = l
|
85 |
+
|
86 |
+
return et0
|
87 |
+
|
88 |
+
|
89 |
+
## Compute Climatics
|
90 |
+
|
91 |
+
|
92 |
+
def compute_frostday(df: pd.DataFrame):
|
93 |
+
"""
|
94 |
+
Define if day is a frost day (min temperature below 0°C).
|
95 |
+
|
96 |
+
Parameters
|
97 |
+
----------
|
98 |
+
df : DataFrame
|
99 |
+
Air sensors data.
|
100 |
+
|
101 |
+
Returns
|
102 |
+
-------
|
103 |
+
bool
|
104 |
+
True if day is a frost day, else False.
|
105 |
+
"""
|
106 |
+
|
107 |
+
T = df.air_temperature.resample("1d").min()
|
108 |
+
|
109 |
+
ind = climatic_indicators.frost_bool(T, 0)
|
110 |
+
if ind.shape[0] == 1:
|
111 |
+
ind = ind.iloc[0]
|
112 |
+
return ind
|
113 |
+
|
114 |
+
|
115 |
+
def compute_strongfrostday(df: pd.DataFrame):
|
116 |
+
"""
|
117 |
+
Define if day is a strong frost day (min temperature below -3°C).
|
118 |
+
|
119 |
+
Parameters
|
120 |
+
----------
|
121 |
+
df : DataFrame
|
122 |
+
The input dataframe containing temperature data.
|
123 |
+
|
124 |
+
Returns
|
125 |
+
-------
|
126 |
+
bool
|
127 |
+
True if day is a strong frost day, else False.
|
128 |
+
"""
|
129 |
+
|
130 |
+
T = df.air_temperature.resample("1d").min()
|
131 |
+
|
132 |
+
ind = climatic_indicators.frost_bool(T, -3)
|
133 |
+
if ind.shape[0] == 1:
|
134 |
+
ind = ind.iloc[0]
|
135 |
+
|
136 |
+
return ind
|
137 |
+
|
138 |
+
|
139 |
+
def compute_thermalstressday(df: pd.DataFrame, stress_threshold: float = 35):
|
140 |
+
"""
|
141 |
+
Define if daily temperature is a source of thermal stress (max temperature above stress threshold).
|
142 |
+
|
143 |
+
Parameters
|
144 |
+
----------
|
145 |
+
df : DataFrame
|
146 |
+
The input dataframe containing air temperature data.
|
147 |
+
|
148 |
+
stress_threshold : float
|
149 |
+
Threshold temperature of stress (degrees Celsius).
|
150 |
+
|
151 |
+
Returns
|
152 |
+
-------
|
153 |
+
bool
|
154 |
+
True if day is a day with thermal stress, else False.
|
155 |
+
"""
|
156 |
+
|
157 |
+
T = df.air_temperature.resample("1d").max()
|
158 |
+
|
159 |
+
ind = climatic_indicators.thermalstress_bool(T, stress_threshold)
|
160 |
+
if ind.shape[0] == 1:
|
161 |
+
ind = ind.iloc[0]
|
162 |
+
|
163 |
+
return ind
|
164 |
+
|
165 |
+
|
166 |
+
def compute_summerday(df: pd.DataFrame):
|
167 |
+
"""
|
168 |
+
Define if day is a summer day (max temperature above 25°C).
|
169 |
+
|
170 |
+
Parameters
|
171 |
+
----------
|
172 |
+
df : DataFrame
|
173 |
+
The input dataframe containing air temperature data.
|
174 |
+
|
175 |
+
Returns
|
176 |
+
-------
|
177 |
+
bool
|
178 |
+
True if day is a summer day, else False.
|
179 |
+
"""
|
180 |
+
T = df.air_temperature.resample("1d").max()
|
181 |
+
|
182 |
+
ind = climatic_indicators.summerday_bool(T)
|
183 |
+
if ind.shape[0] == 1:
|
184 |
+
ind = ind.iloc[0]
|
185 |
+
|
186 |
+
return ind
|
187 |
+
|
188 |
+
|
189 |
+
def compute_scorchday(df: pd.DataFrame, scorch_threshold: float = 25):
|
190 |
+
"""
|
191 |
+
Define if day is a scorching day (jour échaudant) (max temperature above scorch threshold).
|
192 |
+
|
193 |
+
Parameters
|
194 |
+
----------
|
195 |
+
df : DataFrame
|
196 |
+
The input dataframe containing air temperature data.
|
197 |
+
|
198 |
+
scorch_threshold : float
|
199 |
+
Temperature threshold above which the day is considered scorching (degrees Celsius).
|
200 |
+
|
201 |
+
Returns
|
202 |
+
-------
|
203 |
+
bool
|
204 |
+
True if day is a scorching day, else False.
|
205 |
+
"""
|
206 |
+
T = df.air_temperature.resample("1d").max()
|
207 |
+
|
208 |
+
ind = climatic_indicators.scorch_bool(T, scorch_threshold)
|
209 |
+
|
210 |
+
if ind.shape[0] == 1:
|
211 |
+
ind = ind.iloc[0]
|
212 |
+
|
213 |
+
return ind
|
214 |
+
|
215 |
+
|
216 |
+
def compute_tropicalnight(df: pd.DataFrame, latitude: float, longitude: float):
|
217 |
+
"""
|
218 |
+
Define if night is a tropical night (min temperature above 20°C).
|
219 |
+
|
220 |
+
Parameters
|
221 |
+
----------
|
222 |
+
df : DataFrame
|
223 |
+
The input dataframe containing air temperature data.
|
224 |
+
|
225 |
+
latitude : float
|
226 |
+
Latitude of the location.
|
227 |
+
|
228 |
+
longitude : float
|
229 |
+
Longitude of the location.
|
230 |
+
|
231 |
+
Returns
|
232 |
+
-------
|
233 |
+
bool
|
234 |
+
True if night is a tropical night, else False.
|
235 |
+
"""
|
236 |
+
if len(df) == 0:
|
237 |
+
return None
|
238 |
+
|
239 |
+
df = sun_rise_set_transit_spa(
|
240 |
+
times=df.index, latitude=latitude, longitude=longitude
|
241 |
+
).merge(df["air_temperature"], left_index=True, right_index=True)
|
242 |
+
df = df.loc[(df.index < df["sunrise"]) | (df.index > df["sunset"])]
|
243 |
+
|
244 |
+
df_minnight = df.resample("24h", offset="12h")["air_temperature"].min()
|
245 |
+
|
246 |
+
tropicalnight = climatic_indicators.tropicalnight_bool(df_minnight)
|
247 |
+
|
248 |
+
if tropicalnight.shape[0] == 1:
|
249 |
+
tropicalnight = tropicalnight.iloc[0]
|
250 |
+
|
251 |
+
return tropicalnight
|
252 |
+
|
253 |
+
|
254 |
+
def compute_mintempnight(df: pd.DataFrame, latitude: float, longitude: float):
|
255 |
+
"""
|
256 |
+
Return minimal night temperature.
|
257 |
+
|
258 |
+
Parameters
|
259 |
+
----------
|
260 |
+
df : DataFrame
|
261 |
+
The input dataframe containing air temperature data.
|
262 |
+
|
263 |
+
latitude : float
|
264 |
+
Latitude of the location.
|
265 |
+
|
266 |
+
longitude : float
|
267 |
+
Longitude of the location.
|
268 |
+
|
269 |
+
Returns
|
270 |
+
-------
|
271 |
+
float
|
272 |
+
Min night temperature (degrees Celsius).
|
273 |
+
"""
|
274 |
+
if len(df) == 0:
|
275 |
+
return None
|
276 |
+
|
277 |
+
df = sun_rise_set_transit_spa(df.index, latitude, longitude).merge(
|
278 |
+
df["air_temperature"], left_index=True, right_index=True
|
279 |
+
)
|
280 |
+
df = df.loc[(df.index < df["sunrise"]) | (df.index > df["sunset"])]
|
281 |
+
|
282 |
+
df_minnight = df.resample("24h", offset="12h")["air_temperature"].min()
|
283 |
+
|
284 |
+
if df_minnight.shape[0] == 1:
|
285 |
+
df_minnight = df_minnight.iloc[0]
|
286 |
+
|
287 |
+
return df_minnight
|
288 |
+
|
289 |
+
|
290 |
+
def compute_hli(
|
291 |
+
df: pd.DataFrame,
|
292 |
+
):
|
293 |
+
"""
|
294 |
+
Computes HLI (heat load index).
|
295 |
+
|
296 |
+
Parameters
|
297 |
+
----------
|
298 |
+
df : DataFrame
|
299 |
+
The input dataframe containing air temperature data.
|
300 |
+
|
301 |
+
Returns
|
302 |
+
-------
|
303 |
+
float
|
304 |
+
HLI value.
|
305 |
+
"""
|
306 |
+
|
307 |
+
ind = animal_indicators.hli(
|
308 |
+
irradiance=df.photon_flux_density,
|
309 |
+
air_temperature=df.air_temperature,
|
310 |
+
RH=df.relative_humidity,
|
311 |
+
wind_speed=df.wind_speed,
|
312 |
+
)
|
313 |
+
|
314 |
+
if ind.size == 1:
|
315 |
+
df_ind = float(ind)
|
316 |
+
else:
|
317 |
+
df_ind = pd.Series(ind, index=df.index)
|
318 |
+
|
319 |
+
return df_ind
|
docs/pyeto/__init__.py
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .convert import (
|
2 |
+
celsius2kelvin,
|
3 |
+
kelvin2celsius,
|
4 |
+
deg2rad,
|
5 |
+
rad2deg,
|
6 |
+
)
|
7 |
+
|
8 |
+
from .fao import (
|
9 |
+
atm_pressure,
|
10 |
+
avp_from_tmin,
|
11 |
+
avp_from_rhmin_rhmax,
|
12 |
+
avp_from_rhmax,
|
13 |
+
avp_from_rhmean,
|
14 |
+
avp_from_tdew,
|
15 |
+
avp_from_twet_tdry,
|
16 |
+
cs_rad,
|
17 |
+
daily_mean_t,
|
18 |
+
daylight_hours,
|
19 |
+
delta_svp,
|
20 |
+
energy2evap,
|
21 |
+
et_rad,
|
22 |
+
fao56_penman_monteith,
|
23 |
+
hargreaves,
|
24 |
+
inv_rel_dist_earth_sun,
|
25 |
+
mean_svp,
|
26 |
+
monthly_soil_heat_flux,
|
27 |
+
monthly_soil_heat_flux2,
|
28 |
+
net_in_sol_rad,
|
29 |
+
net_out_lw_rad,
|
30 |
+
net_rad,
|
31 |
+
psy_const,
|
32 |
+
psy_const_of_psychrometer,
|
33 |
+
rh_from_avp_svp,
|
34 |
+
SOLAR_CONSTANT,
|
35 |
+
sol_dec,
|
36 |
+
sol_rad_from_sun_hours,
|
37 |
+
sol_rad_from_t,
|
38 |
+
sol_rad_island,
|
39 |
+
STEFAN_BOLTZMANN_CONSTANT,
|
40 |
+
sunset_hour_angle,
|
41 |
+
svp_from_t,
|
42 |
+
wind_speed_2m,
|
43 |
+
)
|
44 |
+
|
45 |
+
from .thornthwaite import (
|
46 |
+
thornthwaite,
|
47 |
+
monthly_mean_daylight_hours,
|
48 |
+
)
|
49 |
+
|
50 |
+
__all__ = [
|
51 |
+
# Unit conversions
|
52 |
+
"celsius2kelvin",
|
53 |
+
"deg2rad",
|
54 |
+
"kelvin2celsius",
|
55 |
+
"rad2deg",
|
56 |
+
# FAO equations
|
57 |
+
"atm_pressure",
|
58 |
+
"avp_from_tmin",
|
59 |
+
"avp_from_rhmin_rhmax",
|
60 |
+
"avp_from_rhmax",
|
61 |
+
"avp_from_rhmean",
|
62 |
+
"avp_from_tdew",
|
63 |
+
"avp_from_twet_tdry",
|
64 |
+
"cs_rad",
|
65 |
+
"daily_mean_t",
|
66 |
+
"daylight_hours",
|
67 |
+
"delta_svp",
|
68 |
+
"energy2evap",
|
69 |
+
"et_rad",
|
70 |
+
"fao56_penman_monteith",
|
71 |
+
"hargreaves",
|
72 |
+
"inv_rel_dist_earth_sun",
|
73 |
+
"mean_svp",
|
74 |
+
"monthly_soil_heat_flux",
|
75 |
+
"monthly_soil_heat_flux2",
|
76 |
+
"net_in_sol_rad",
|
77 |
+
"net_out_lw_rad",
|
78 |
+
"net_rad",
|
79 |
+
"psy_const",
|
80 |
+
"psy_const_of_psychrometer",
|
81 |
+
"rh_from_avp_svp",
|
82 |
+
"SOLAR_CONSTANT",
|
83 |
+
"sol_dec",
|
84 |
+
"sol_rad_from_sun_hours",
|
85 |
+
"sol_rad_from_t",
|
86 |
+
"sol_rad_island",
|
87 |
+
"STEFAN_BOLTZMANN_CONSTANT",
|
88 |
+
"sunset_hour_angle",
|
89 |
+
"svp_from_t",
|
90 |
+
"wind_speed_2m",
|
91 |
+
# Thornthwaite method
|
92 |
+
"thornthwaite",
|
93 |
+
"monthly_mean_daylight_hours",
|
94 |
+
]
|
docs/pyeto/_check.py
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Internal validation functions.
|
3 |
+
|
4 |
+
:copyright: (c) 2015 by Mark Richards.
|
5 |
+
:license: BSD 3-Clause, see LICENSE.txt for more details.
|
6 |
+
"""
|
7 |
+
from .convert import deg2rad
|
8 |
+
import numpy as np
|
9 |
+
|
10 |
+
# Internal constants
|
11 |
+
# Latitude
|
12 |
+
_MINLAT_RADIANS = deg2rad(-90.0)
|
13 |
+
_MAXLAT_RADIANS = deg2rad(90.0)
|
14 |
+
|
15 |
+
# Solar declination
|
16 |
+
_MINSOLDEC_RADIANS = deg2rad(-23.5)
|
17 |
+
_MAXSOLDEC_RADIANS = deg2rad(23.5)
|
18 |
+
|
19 |
+
# Sunset hour angle
|
20 |
+
_MINSHA_RADIANS = 0.0
|
21 |
+
_MAXSHA_RADIANS = deg2rad(180)
|
22 |
+
|
23 |
+
|
24 |
+
def check_day_hours(hours, arg_name):
|
25 |
+
"""
|
26 |
+
Check that *hours* is in the range 1 to 24.
|
27 |
+
"""
|
28 |
+
if not np.all((0 <= hours) & (hours <= 24)):
|
29 |
+
raise ValueError("{0} should be in range 0-24: {1!r}".format(arg_name, hours))
|
30 |
+
|
31 |
+
|
32 |
+
def check_doy(doy):
|
33 |
+
"""
|
34 |
+
Check day of the year is valid.
|
35 |
+
"""
|
36 |
+
if not np.all((1 <= doy) & (doy <= 366)):
|
37 |
+
raise ValueError(
|
38 |
+
"Day of the year (doy) must be in range 1-366."
|
39 |
+
)
|
40 |
+
|
41 |
+
|
42 |
+
def check_latitude_rad(latitude):
|
43 |
+
if not np.all((_MINLAT_RADIANS <= latitude) & (latitude <= _MAXLAT_RADIANS)):
|
44 |
+
raise ValueError(
|
45 |
+
"latitude outside valid range {0!r} to {1!r} rad: {2!r}".format(
|
46 |
+
_MINLAT_RADIANS, _MAXLAT_RADIANS, latitude
|
47 |
+
)
|
48 |
+
)
|
49 |
+
|
50 |
+
|
51 |
+
def check_sol_dec_rad(sd):
|
52 |
+
"""
|
53 |
+
Solar declination can vary between -23.5 and +23.5 degrees.
|
54 |
+
|
55 |
+
See http://mypages.iit.edu/~maslanka/SolarGeo.pdf
|
56 |
+
"""
|
57 |
+
if not np.all((_MINSOLDEC_RADIANS <= sd) & (sd <= _MAXSOLDEC_RADIANS)):
|
58 |
+
raise ValueError(
|
59 |
+
"solar declination outside valid range {0!r} to {1!r} rad: {2!r}".format(
|
60 |
+
_MINSOLDEC_RADIANS, _MAXSOLDEC_RADIANS, sd
|
61 |
+
)
|
62 |
+
)
|
63 |
+
|
64 |
+
|
65 |
+
def check_sunset_hour_angle_rad(sha):
|
66 |
+
"""
|
67 |
+
Sunset hour angle has the range 0 to 180 degrees.
|
68 |
+
|
69 |
+
See http://mypages.iit.edu/~maslanka/SolarGeo.pdf
|
70 |
+
"""
|
71 |
+
if not np.all((_MINSHA_RADIANS <= sha) & (sha <= _MAXSHA_RADIANS)):
|
72 |
+
raise ValueError(
|
73 |
+
"sunset hour angle outside valid range {0!r} to {1!r} rad: {2!r}".format(
|
74 |
+
_MINSHA_RADIANS, _MAXSHA_RADIANS, sha
|
75 |
+
)
|
76 |
+
)
|
docs/pyeto/convert.py
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Unit conversion functions.
|
3 |
+
|
4 |
+
:copyright: (c) 2015 by Mark Richards.
|
5 |
+
:license: BSD 3-Clause, see LICENSE.txt for more details.
|
6 |
+
"""
|
7 |
+
|
8 |
+
import numpy as np
|
9 |
+
|
10 |
+
|
11 |
+
def celsius2kelvin(celsius):
|
12 |
+
"""
|
13 |
+
Convert temperature in degrees Celsius to degrees Kelvin.
|
14 |
+
|
15 |
+
:param celsius: Degrees Celsius
|
16 |
+
:return: Degrees Kelvin
|
17 |
+
:rtype: float
|
18 |
+
"""
|
19 |
+
return celsius + 273.15
|
20 |
+
|
21 |
+
|
22 |
+
def kelvin2celsius(kelvin):
|
23 |
+
"""
|
24 |
+
Convert temperature in degrees Kelvin to degrees Celsius.
|
25 |
+
|
26 |
+
:param kelvin: Degrees Kelvin
|
27 |
+
:return: Degrees Celsius
|
28 |
+
:rtype: float
|
29 |
+
"""
|
30 |
+
return kelvin - 273.15
|
31 |
+
|
32 |
+
|
33 |
+
def deg2rad(degrees):
|
34 |
+
"""
|
35 |
+
Convert angular degrees to radians
|
36 |
+
|
37 |
+
:param degrees: Value in degrees to be converted.
|
38 |
+
:return: Value in radians
|
39 |
+
:rtype: float
|
40 |
+
"""
|
41 |
+
return degrees * (np.pi / 180.0)
|
42 |
+
|
43 |
+
|
44 |
+
def rad2deg(radians):
|
45 |
+
"""
|
46 |
+
Convert radians to angular degrees
|
47 |
+
|
48 |
+
:param radians: Value in radians to be converted.
|
49 |
+
:return: Value in angular degrees
|
50 |
+
:rtype: float
|
51 |
+
"""
|
52 |
+
return radians * (180.0 / np.pi)
|
docs/pyeto/fao.py
ADDED
@@ -0,0 +1,735 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Library of functions for estimating reference evapotransporation (ETo) for
|
3 |
+
a grass reference crop using the FAO-56 Penman-Monteith and Hargreaves
|
4 |
+
equations. The library includes numerous functions for estimating missing
|
5 |
+
meteorological data.
|
6 |
+
|
7 |
+
:copyright: (c) 2015 by Mark Richards.
|
8 |
+
:license: BSD 3-Clause, see LICENSE.txt for more details.
|
9 |
+
"""
|
10 |
+
|
11 |
+
import numpy as np
|
12 |
+
|
13 |
+
from ._check import (
|
14 |
+
check_day_hours as _check_day_hours,
|
15 |
+
check_doy as _check_doy,
|
16 |
+
check_latitude_rad as _check_latitude_rad,
|
17 |
+
check_sol_dec_rad as _check_sol_dec_rad,
|
18 |
+
check_sunset_hour_angle_rad as _check_sunset_hour_angle_rad,
|
19 |
+
)
|
20 |
+
|
21 |
+
#: Solar constant [ MJ m-2 min-1]
|
22 |
+
SOLAR_CONSTANT = 0.0820
|
23 |
+
|
24 |
+
# Stefan Boltzmann constant [MJ K-4 m-2 day-1]
|
25 |
+
STEFAN_BOLTZMANN_CONSTANT = 0.000000004903 #
|
26 |
+
"""Stefan Boltzmann constant [MJ K-4 m-2 day-1]"""
|
27 |
+
|
28 |
+
|
29 |
+
def atm_pressure(altitude):
|
30 |
+
"""
|
31 |
+
Estimate atmospheric pressure from altitude.
|
32 |
+
|
33 |
+
Calculated using a simplification of the ideal gas law, assuming 20 degrees
|
34 |
+
Celsius for a standard atmosphere. Based on equation 7, page 62 in Allen
|
35 |
+
et al (1998).
|
36 |
+
|
37 |
+
:param altitude: Elevation/altitude above sea level [m]
|
38 |
+
:return: atmospheric pressure [kPa]
|
39 |
+
:rtype: float
|
40 |
+
"""
|
41 |
+
tmp = (293.0 - (0.0065 * altitude)) / 293.0
|
42 |
+
return np.power(tmp, 5.26) * 101.3
|
43 |
+
|
44 |
+
|
45 |
+
def avp_from_tmin(tmin):
|
46 |
+
"""
|
47 |
+
Estimate actual vapour pressure (*ea*) from minimum temperature.
|
48 |
+
|
49 |
+
This method is to be used where humidity data are lacking or are of
|
50 |
+
questionable quality. The method assumes that the dewpoint temperature
|
51 |
+
is approximately equal to the minimum temperature (*tmin*), i.e. the
|
52 |
+
air is saturated with water vapour at *tmin*.
|
53 |
+
|
54 |
+
**Note**: This assumption may not hold in arid/semi-arid areas.
|
55 |
+
In these areas it may be better to subtract 2 deg C from the
|
56 |
+
minimum temperature (see Annex 6 in FAO paper).
|
57 |
+
|
58 |
+
Based on equation 48 in Allen et al (1998).
|
59 |
+
|
60 |
+
:param tmin: Daily minimum temperature [deg C]
|
61 |
+
:return: Actual vapour pressure [kPa]
|
62 |
+
:rtype: float
|
63 |
+
"""
|
64 |
+
return 0.611 * np.exp((17.27 * tmin) / (tmin + 237.3))
|
65 |
+
|
66 |
+
|
67 |
+
def avp_from_rhmin_rhmax(svp_tmin, svp_tmax, rh_min, rh_max):
|
68 |
+
"""
|
69 |
+
Estimate actual vapour pressure (*ea*) from saturation vapour pressure and
|
70 |
+
relative humidity.
|
71 |
+
|
72 |
+
Based on FAO equation 17 in Allen et al (1998).
|
73 |
+
|
74 |
+
:param svp_tmin: Saturation vapour pressure at daily minimum temperature
|
75 |
+
[kPa]. Can be estimated using ``svp_from_t()``.
|
76 |
+
:param svp_tmax: Saturation vapour pressure at daily maximum temperature
|
77 |
+
[kPa]. Can be estimated using ``svp_from_t()``.
|
78 |
+
:param rh_min: Minimum relative humidity [%]
|
79 |
+
:param rh_max: Maximum relative humidity [%]
|
80 |
+
:return: Actual vapour pressure [kPa]
|
81 |
+
:rtype: float
|
82 |
+
"""
|
83 |
+
tmp1 = svp_tmin * (rh_max / 100.0)
|
84 |
+
tmp2 = svp_tmax * (rh_min / 100.0)
|
85 |
+
return (tmp1 + tmp2) / 2.0
|
86 |
+
|
87 |
+
|
88 |
+
def avp_from_rhmax(svp_tmin, rh_max):
|
89 |
+
"""
|
90 |
+
Estimate actual vapour pressure (*e*a) from saturation vapour pressure at
|
91 |
+
daily minimum temperature and maximum relative humidity
|
92 |
+
|
93 |
+
Based on FAO equation 18 in Allen et al (1998).
|
94 |
+
|
95 |
+
:param svp_tmin: Saturation vapour pressure at daily minimum temperature
|
96 |
+
[kPa]. Can be estimated using ``svp_from_t()``.
|
97 |
+
:param rh_max: Maximum relative humidity [%]
|
98 |
+
:return: Actual vapour pressure [kPa]
|
99 |
+
:rtype: float
|
100 |
+
"""
|
101 |
+
return svp_tmin * (rh_max / 100.0)
|
102 |
+
|
103 |
+
|
104 |
+
def avp_from_rhmean(svp_tmin, svp_tmax, rh_mean):
|
105 |
+
"""
|
106 |
+
Estimate actual vapour pressure (*ea*) from saturation vapour pressure at
|
107 |
+
daily minimum and maximum temperature, and mean relative humidity.
|
108 |
+
|
109 |
+
Based on FAO equation 19 in Allen et al (1998).
|
110 |
+
|
111 |
+
:param svp_tmin: Saturation vapour pressure at daily minimum temperature
|
112 |
+
[kPa]. Can be estimated using ``svp_from_t()``.
|
113 |
+
:param svp_tmax: Saturation vapour pressure at daily maximum temperature
|
114 |
+
[kPa]. Can be estimated using ``svp_from_t()``.
|
115 |
+
:param rh_mean: Mean relative humidity [%] (average of RH min and RH max).
|
116 |
+
:return: Actual vapour pressure [kPa]
|
117 |
+
:rtype: float
|
118 |
+
"""
|
119 |
+
return (rh_mean / 100.0) * ((svp_tmax + svp_tmin) / 2.0)
|
120 |
+
|
121 |
+
|
122 |
+
def avp_from_tdew(tdew):
|
123 |
+
"""
|
124 |
+
Estimate actual vapour pressure (*ea*) from dewpoint temperature.
|
125 |
+
|
126 |
+
Based on equation 14 in Allen et al (1998). As the dewpoint temperature is
|
127 |
+
the temperature to which air needs to be cooled to make it saturated, the
|
128 |
+
actual vapour pressure is the saturation vapour pressure at the dewpoint
|
129 |
+
temperature.
|
130 |
+
|
131 |
+
This method is preferable to calculating vapour pressure from
|
132 |
+
minimum temperature.
|
133 |
+
|
134 |
+
:param tdew: Dewpoint temperature [deg C]
|
135 |
+
:return: Actual vapour pressure [kPa]
|
136 |
+
:rtype: float
|
137 |
+
"""
|
138 |
+
return 0.6108 * np.exp((17.27 * tdew) / (tdew + 237.3))
|
139 |
+
|
140 |
+
|
141 |
+
def avp_from_twet_tdry(twet, tdry, svp_twet, psy_const):
|
142 |
+
"""
|
143 |
+
Estimate actual vapour pressure (*ea*) from wet and dry bulb temperature.
|
144 |
+
|
145 |
+
Based on equation 15 in Allen et al (1998). As the dewpoint temperature
|
146 |
+
is the temperature to which air needs to be cooled to make it saturated, the
|
147 |
+
actual vapour pressure is the saturation vapour pressure at the dewpoint
|
148 |
+
temperature.
|
149 |
+
|
150 |
+
This method is preferable to calculating vapour pressure from
|
151 |
+
minimum temperature.
|
152 |
+
|
153 |
+
Values for the psychrometric constant of the psychrometer (*psy_const*)
|
154 |
+
can be calculated using ``psyc_const_of_psychrometer()``.
|
155 |
+
|
156 |
+
:param twet: Wet bulb temperature [deg C]
|
157 |
+
:param tdry: Dry bulb temperature [deg C]
|
158 |
+
:param svp_twet: Saturated vapour pressure at the wet bulb temperature
|
159 |
+
[kPa]. Can be estimated using ``svp_from_t()``.
|
160 |
+
:param psy_const: Psychrometric constant of the pyschrometer [kPa deg C-1].
|
161 |
+
Can be estimated using ``psy_const()`` or
|
162 |
+
``psy_const_of_psychrometer()``.
|
163 |
+
:return: Actual vapour pressure [kPa]
|
164 |
+
:rtype: float
|
165 |
+
"""
|
166 |
+
return svp_twet - (psy_const * (tdry - twet))
|
167 |
+
|
168 |
+
|
169 |
+
def cs_rad(altitude, et_rad):
|
170 |
+
"""
|
171 |
+
Estimate clear sky radiation from altitude and extraterrestrial radiation.
|
172 |
+
|
173 |
+
Based on equation 37 in Allen et al (1998) which is recommended when
|
174 |
+
calibrated Angstrom values are not available.
|
175 |
+
|
176 |
+
:param altitude: Elevation above sea level [m]
|
177 |
+
:param et_rad: Extraterrestrial radiation [MJ m-2 day-1]. Can be
|
178 |
+
estimated using ``et_rad()``.
|
179 |
+
:return: Clear sky radiation [MJ m-2 day-1]
|
180 |
+
:rtype: float
|
181 |
+
"""
|
182 |
+
return (0.00002 * altitude + 0.75) * et_rad
|
183 |
+
|
184 |
+
|
185 |
+
def daily_mean_t(tmin, tmax):
|
186 |
+
"""
|
187 |
+
Estimate mean daily temperature from the daily minimum and maximum
|
188 |
+
temperatures.
|
189 |
+
|
190 |
+
:param tmin: Minimum daily temperature [deg C]
|
191 |
+
:param tmax: Maximum daily temperature [deg C]
|
192 |
+
:return: Mean daily temperature [deg C]
|
193 |
+
:rtype: float
|
194 |
+
"""
|
195 |
+
return (tmax + tmin) / 2.0
|
196 |
+
|
197 |
+
|
198 |
+
def daylight_hours(sha):
|
199 |
+
"""
|
200 |
+
Calculate daylight hours from sunset hour angle.
|
201 |
+
|
202 |
+
Based on FAO equation 34 in Allen et al (1998).
|
203 |
+
|
204 |
+
:param sha: Sunset hour angle [rad]. Can be calculated using
|
205 |
+
``sunset_hour_angle()``.
|
206 |
+
:return: Daylight hours.
|
207 |
+
:rtype: float
|
208 |
+
"""
|
209 |
+
_check_sunset_hour_angle_rad(sha)
|
210 |
+
return (24.0 / np.pi) * sha
|
211 |
+
|
212 |
+
|
213 |
+
def delta_svp(t):
|
214 |
+
"""
|
215 |
+
Estimate the slope of the saturation vapour pressure curve at a given
|
216 |
+
temperature.
|
217 |
+
|
218 |
+
Based on equation 13 in Allen et al (1998). If using in the Penman-Monteith
|
219 |
+
*t* should be the mean air temperature.
|
220 |
+
|
221 |
+
:param t: Air temperature [deg C]. Use mean air temperature for use in
|
222 |
+
Penman-Monteith.
|
223 |
+
:return: Saturation vapour pressure [kPa degC-1]
|
224 |
+
:rtype: float
|
225 |
+
"""
|
226 |
+
tmp = 4098 * (0.6108 * np.exp((17.27 * t) / (t + 237.3)))
|
227 |
+
return tmp / np.power((t + 237.3), 2)
|
228 |
+
|
229 |
+
|
230 |
+
def energy2evap(energy):
|
231 |
+
"""
|
232 |
+
Convert energy (e.g. radiation energy) in MJ m-2 day-1 to the equivalent
|
233 |
+
evaporation, assuming a grass reference crop.
|
234 |
+
|
235 |
+
Energy is converted to equivalent evaporation using a conversion
|
236 |
+
factor equal to the inverse of the latent heat of vapourisation
|
237 |
+
(1 / lambda = 0.408).
|
238 |
+
|
239 |
+
Based on FAO equation 20 in Allen et al (1998).
|
240 |
+
|
241 |
+
:param energy: Energy e.g. radiation or heat flux [MJ m-2 day-1].
|
242 |
+
:return: Equivalent evaporation [mm day-1].
|
243 |
+
:rtype: float
|
244 |
+
"""
|
245 |
+
return 0.408 * energy
|
246 |
+
|
247 |
+
|
248 |
+
def et_rad(latitude, sol_dec, sha, ird):
|
249 |
+
"""
|
250 |
+
Estimate daily extraterrestrial radiation (*Ra*, 'top of the atmosphere
|
251 |
+
radiation').
|
252 |
+
|
253 |
+
Based on equation 21 in Allen et al (1998). If monthly mean radiation is
|
254 |
+
required make sure *sol_dec*. *sha* and *irl* have been calculated using
|
255 |
+
the day of the year that corresponds to the middle of the month.
|
256 |
+
|
257 |
+
**Note**: From Allen et al (1998): "For the winter months in latitudes
|
258 |
+
greater than 55 degrees (N or S), the equations have limited validity.
|
259 |
+
Reference should be made to the Smithsonian Tables to assess possible
|
260 |
+
deviations."
|
261 |
+
|
262 |
+
:param latitude: Latitude [radians]
|
263 |
+
:param sol_dec: Solar declination [radians]. Can be calculated using
|
264 |
+
``sol_dec()``.
|
265 |
+
:param sha: Sunset hour angle [radians]. Can be calculated using
|
266 |
+
``sunset_hour_angle()``.
|
267 |
+
:param ird: Inverse relative distance earth-sun [dimensionless]. Can be
|
268 |
+
calculated using ``inv_rel_dist_earth_sun()``.
|
269 |
+
:return: Daily extraterrestrial radiation [MJ m-2 day-1]
|
270 |
+
:rtype: float
|
271 |
+
"""
|
272 |
+
_check_latitude_rad(latitude)
|
273 |
+
_check_sol_dec_rad(sol_dec)
|
274 |
+
_check_sunset_hour_angle_rad(sha)
|
275 |
+
|
276 |
+
tmp1 = (24.0 * 60.0) / np.pi
|
277 |
+
tmp2 = sha * np.sin(latitude) * np.sin(sol_dec)
|
278 |
+
tmp3 = np.cos(latitude) * np.cos(sol_dec) * np.sin(sha)
|
279 |
+
return tmp1 * SOLAR_CONSTANT * ird * (tmp2 + tmp3)
|
280 |
+
|
281 |
+
|
282 |
+
def fao56_penman_monteith(net_rad, t, ws, svp, avp, delta_svp, psy, shf=0.0):
|
283 |
+
"""
|
284 |
+
Estimate reference evapotranspiration (ETo) from a hypothetical
|
285 |
+
short grass reference surface using the FAO-56 Penman-Monteith equation.
|
286 |
+
|
287 |
+
Based on equation 6 in Allen et al (1998).
|
288 |
+
|
289 |
+
:param net_rad: Net radiation at crop surface [MJ m-2 day-1]. If
|
290 |
+
necessary this can be estimated using ``net_rad()``.
|
291 |
+
:param t: Air temperature at 2 m height [deg Kelvin].
|
292 |
+
:param ws: Wind speed at 2 m height [m s-1]. If not measured at 2m,
|
293 |
+
convert using ``wind_speed_at_2m()``.
|
294 |
+
:param svp: Saturation vapour pressure [kPa]. Can be estimated using
|
295 |
+
``svp_from_t()''.
|
296 |
+
:param avp: Actual vapour pressure [kPa]. Can be estimated using a range
|
297 |
+
of functions with names beginning with 'avp_from'.
|
298 |
+
:param delta_svp: Slope of saturation vapour pressure curve [kPa degC-1].
|
299 |
+
Can be estimated using ``delta_svp()``.
|
300 |
+
:param psy: Psychrometric constant [kPa deg C]. Can be estimatred using
|
301 |
+
``psy_const_of_psychrometer()`` or ``psy_const()``.
|
302 |
+
:param shf: Soil heat flux (G) [MJ m-2 day-1] (default is 0.0, which is
|
303 |
+
reasonable for a daily or 10-day time steps). For monthly time steps
|
304 |
+
*shf* can be estimated using ``monthly_soil_heat_flux()`` or
|
305 |
+
``monthly_soil_heat_flux2()``.
|
306 |
+
:return: Reference evapotranspiration (ETo) from a hypothetical
|
307 |
+
grass reference surface [mm day-1].
|
308 |
+
:rtype: float
|
309 |
+
"""
|
310 |
+
a1 = (0.408 * (net_rad - shf) * delta_svp /
|
311 |
+
(delta_svp + (psy * (1 + 0.34 * ws))))
|
312 |
+
a2 = (900 * ws / t * (svp - avp) * psy /
|
313 |
+
(delta_svp + (psy * (1 + 0.34 * ws))))
|
314 |
+
return a1 + a2
|
315 |
+
|
316 |
+
|
317 |
+
def hargreaves(tmin, tmax, tmean, et_rad):
|
318 |
+
"""
|
319 |
+
Estimate reference evapotranspiration over grass (ETo) using the Hargreaves
|
320 |
+
equation.
|
321 |
+
|
322 |
+
Generally, when solar radiation data, relative humidity data
|
323 |
+
and/or wind speed data are missing, it is better to estimate them using
|
324 |
+
the functions available in this module, and then calculate ETo
|
325 |
+
the FAO Penman-Monteith equation. However, as an alternative, ETo can be
|
326 |
+
estimated using the Hargreaves ETo equation.
|
327 |
+
|
328 |
+
Based on equation 52 in Allen et al (1998).
|
329 |
+
|
330 |
+
:param tmin: Minimum daily temperature [deg C]
|
331 |
+
:param tmax: Maximum daily temperature [deg C]
|
332 |
+
:param tmean: Mean daily temperature [deg C]. If emasurements not
|
333 |
+
available it can be estimated as (*tmin* + *tmax*) / 2.
|
334 |
+
:param et_rad: Extraterrestrial radiation (Ra) [MJ m-2 day-1]. Can be
|
335 |
+
estimated using ``et_rad()``.
|
336 |
+
:return: Reference evapotranspiration over grass (ETo) [mm day-1]
|
337 |
+
:rtype: float
|
338 |
+
"""
|
339 |
+
# Note, multiplied by 0.408 to convert extraterrestrial radiation could
|
340 |
+
# be given in MJ m-2 day-1 rather than as equivalent evaporation in
|
341 |
+
# mm day-1
|
342 |
+
return 0.0023 * (tmean + 17.8) * (tmax - tmin) ** 0.5 * 0.408 * et_rad
|
343 |
+
|
344 |
+
|
345 |
+
def inv_rel_dist_earth_sun(day_of_year):
|
346 |
+
"""
|
347 |
+
Calculate the inverse relative distance between earth and sun from
|
348 |
+
day of the year.
|
349 |
+
|
350 |
+
Based on FAO equation 23 in Allen et al (1998).
|
351 |
+
|
352 |
+
:param day_of_year: Day of the year [1 to 366]
|
353 |
+
:return: Inverse relative distance between earth and the sun
|
354 |
+
:rtype: float
|
355 |
+
"""
|
356 |
+
_check_doy(day_of_year)
|
357 |
+
return 1 + (0.033 * np.cos((2.0 * np.pi / 365.0) * day_of_year))
|
358 |
+
|
359 |
+
|
360 |
+
def mean_svp(tmin, tmax):
|
361 |
+
"""
|
362 |
+
Estimate mean saturation vapour pressure, *es* [kPa] from minimum and
|
363 |
+
maximum temperature.
|
364 |
+
|
365 |
+
Based on equations 11 and 12 in Allen et al (1998).
|
366 |
+
|
367 |
+
Mean saturation vapour pressure is calculated as the mean of the
|
368 |
+
saturation vapour pressure at tmax (maximum temperature) and tmin
|
369 |
+
(minimum temperature).
|
370 |
+
|
371 |
+
:param tmin: Minimum temperature [deg C]
|
372 |
+
:param tmax: Maximum temperature [deg C]
|
373 |
+
:return: Mean saturation vapour pressure (*es*) [kPa]
|
374 |
+
:rtype: float
|
375 |
+
"""
|
376 |
+
return (svp_from_t(tmin) + svp_from_t(tmax)) / 2.0
|
377 |
+
|
378 |
+
|
379 |
+
def monthly_soil_heat_flux(t_month_prev, t_month_next):
|
380 |
+
"""
|
381 |
+
Estimate monthly soil heat flux (Gmonth) from the mean air temperature of
|
382 |
+
the previous and next month, assuming a grass crop.
|
383 |
+
|
384 |
+
Based on equation 43 in Allen et al (1998). If the air temperature of the
|
385 |
+
next month is not known use ``monthly_soil_heat_flux2()`` instead. The
|
386 |
+
resulting heat flux can be converted to equivalent evaporation [mm day-1]
|
387 |
+
using ``energy2evap()``.
|
388 |
+
|
389 |
+
:param t_month_prev: Mean air temperature of the previous month
|
390 |
+
[deg Celsius]
|
391 |
+
:param t_month2_next: Mean air temperature of the next month [deg Celsius]
|
392 |
+
:return: Monthly soil heat flux (Gmonth) [MJ m-2 day-1]
|
393 |
+
:rtype: float
|
394 |
+
"""
|
395 |
+
return 0.07 * (t_month_next - t_month_prev)
|
396 |
+
|
397 |
+
|
398 |
+
def monthly_soil_heat_flux2(t_month_prev, t_month_cur):
|
399 |
+
"""
|
400 |
+
Estimate monthly soil heat flux (Gmonth) [MJ m-2 day-1] from the mean
|
401 |
+
air temperature of the previous and current month, assuming a grass crop.
|
402 |
+
|
403 |
+
Based on equation 44 in Allen et al (1998). If the air temperature of the
|
404 |
+
next month is available, use ``monthly_soil_heat_flux()`` instead. The
|
405 |
+
resulting heat flux can be converted to equivalent evaporation [mm day-1]
|
406 |
+
using ``energy2evap()``.
|
407 |
+
|
408 |
+
Arguments:
|
409 |
+
:param t_month_prev: Mean air temperature of the previous month
|
410 |
+
[deg Celsius]
|
411 |
+
:param t_month_cur: Mean air temperature of the current month [deg Celsius]
|
412 |
+
:return: Monthly soil heat flux (Gmonth) [MJ m-2 day-1]
|
413 |
+
:rtype: float
|
414 |
+
"""
|
415 |
+
return 0.14 * (t_month_cur - t_month_prev)
|
416 |
+
|
417 |
+
|
418 |
+
def net_in_sol_rad(sol_rad, albedo=0.23):
|
419 |
+
"""
|
420 |
+
Calculate net incoming solar (or shortwave) radiation from gross
|
421 |
+
incoming solar radiation, assuming a grass reference crop.
|
422 |
+
|
423 |
+
Net incoming solar radiation is the net shortwave radiation resulting
|
424 |
+
from the balance between incoming and reflected solar radiation. The
|
425 |
+
output can be converted to equivalent evaporation [mm day-1] using
|
426 |
+
``energy2evap()``.
|
427 |
+
|
428 |
+
Based on FAO equation 38 in Allen et al (1998).
|
429 |
+
|
430 |
+
:param sol_rad: Gross incoming solar radiation [MJ m-2 day-1]. If
|
431 |
+
necessary this can be estimated using functions whose name
|
432 |
+
begins with 'sol_rad_from'.
|
433 |
+
:param albedo: Albedo of the crop as the proportion of gross incoming solar
|
434 |
+
radiation that is reflected by the surface. Default value is 0.23,
|
435 |
+
which is the value used by the FAO for a short grass reference crop.
|
436 |
+
Albedo can be as high as 0.95 for freshly fallen snow and as low as
|
437 |
+
0.05 for wet bare soil. A green vegetation over has an albedo of
|
438 |
+
about 0.20-0.25 (Allen et al, 1998).
|
439 |
+
:return: Net incoming solar (or shortwave) radiation [MJ m-2 day-1].
|
440 |
+
:rtype: float
|
441 |
+
"""
|
442 |
+
return (1 - albedo) * sol_rad
|
443 |
+
|
444 |
+
|
445 |
+
def net_out_lw_rad(tmin, tmax, sol_rad, cs_rad, avp):
|
446 |
+
"""
|
447 |
+
Estimate net outgoing longwave radiation.
|
448 |
+
|
449 |
+
This is the net longwave energy (net energy flux) leaving the
|
450 |
+
earth's surface. It is proportional to the absolute temperature of
|
451 |
+
the surface raised to the fourth power according to the Stefan-Boltzmann
|
452 |
+
law. However, water vapour, clouds, carbon dioxide and dust are absorbers
|
453 |
+
and emitters of longwave radiation. This function corrects the Stefan-
|
454 |
+
Boltzmann law for humidity (using actual vapor pressure) and cloudiness
|
455 |
+
(using solar radiation and clear sky radiation). The concentrations of all
|
456 |
+
other absorbers are assumed to be constant.
|
457 |
+
|
458 |
+
The output can be converted to equivalent evaporation [mm day-1] using
|
459 |
+
``energy2evap()``.
|
460 |
+
|
461 |
+
Based on FAO equation 39 in Allen et al (1998).
|
462 |
+
|
463 |
+
:param tmin: Absolute daily minimum temperature [degrees Kelvin]
|
464 |
+
:param tmax: Absolute daily maximum temperature [degrees Kelvin]
|
465 |
+
:param sol_rad: Solar radiation [MJ m-2 day-1]. If necessary this can be
|
466 |
+
estimated using ``sol+rad()``.
|
467 |
+
:param cs_rad: Clear sky radiation [MJ m-2 day-1]. Can be estimated using
|
468 |
+
``cs_rad()``.
|
469 |
+
:param avp: Actual vapour pressure [kPa]. Can be estimated using functions
|
470 |
+
with names beginning with 'avp_from'.
|
471 |
+
:return: Net outgoing longwave radiation [MJ m-2 day-1]
|
472 |
+
:rtype: float
|
473 |
+
"""
|
474 |
+
tmp1 = (STEFAN_BOLTZMANN_CONSTANT *
|
475 |
+
((np.power(tmax, 4) + np.power(tmin, 4)) / 2))
|
476 |
+
tmp2 = (0.34 - (0.14 * np.sqrt(avp)))
|
477 |
+
tmp3 = 1.35 * (sol_rad / cs_rad) - 0.35
|
478 |
+
return tmp1 * tmp2 * tmp3
|
479 |
+
|
480 |
+
|
481 |
+
def net_rad(ni_sw_rad, no_lw_rad):
|
482 |
+
"""
|
483 |
+
Calculate daily net radiation at the crop surface, assuming a grass
|
484 |
+
reference crop.
|
485 |
+
|
486 |
+
Net radiation is the difference between the incoming net shortwave (or
|
487 |
+
solar) radiation and the outgoing net longwave radiation. Output can be
|
488 |
+
converted to equivalent evaporation [mm day-1] using ``energy2evap()``.
|
489 |
+
|
490 |
+
Based on equation 40 in Allen et al (1998).
|
491 |
+
|
492 |
+
:param ni_sw_rad: Net incoming shortwave radiation [MJ m-2 day-1]. Can be
|
493 |
+
estimated using ``net_in_sol_rad()``.
|
494 |
+
:param no_lw_rad: Net outgoing longwave radiation [MJ m-2 day-1]. Can be
|
495 |
+
estimated using ``net_out_lw_rad()``.
|
496 |
+
:return: Daily net radiation [MJ m-2 day-1].
|
497 |
+
:rtype: float
|
498 |
+
"""
|
499 |
+
return ni_sw_rad - no_lw_rad
|
500 |
+
|
501 |
+
|
502 |
+
def psy_const(atmos_pres):
|
503 |
+
"""
|
504 |
+
Calculate the psychrometric constant.
|
505 |
+
|
506 |
+
This method assumes that the air is saturated with water vapour at the
|
507 |
+
minimum daily temperature. This assumption may not hold in arid areas.
|
508 |
+
|
509 |
+
Based on equation 8, page 95 in Allen et al (1998).
|
510 |
+
|
511 |
+
:param atmos_pres: Atmospheric pressure [kPa]. Can be estimated using
|
512 |
+
``atm_pressure()``.
|
513 |
+
:return: Psychrometric constant [kPa degC-1].
|
514 |
+
:rtype: float
|
515 |
+
"""
|
516 |
+
return 0.000665 * atmos_pres
|
517 |
+
|
518 |
+
|
519 |
+
def psy_const_of_psychrometer(psychrometer, atmos_pres):
|
520 |
+
"""
|
521 |
+
Calculate the psychrometric constant for different types of
|
522 |
+
psychrometer at a given atmospheric pressure.
|
523 |
+
|
524 |
+
Based on FAO equation 16 in Allen et al (1998).
|
525 |
+
|
526 |
+
:param psychrometer: Integer between 1 and 3 which denotes type of
|
527 |
+
psychrometer:
|
528 |
+
1. ventilated (Asmann or aspirated type) psychrometer with
|
529 |
+
an air movement of approximately 5 m/s
|
530 |
+
2. natural ventilated psychrometer with an air movement
|
531 |
+
of approximately 1 m/s
|
532 |
+
3. non ventilated psychrometer installed indoors
|
533 |
+
:param atmos_pres: Atmospheric pressure [kPa]. Can be estimated using
|
534 |
+
``atm_pressure()``.
|
535 |
+
:return: Psychrometric constant [kPa degC-1].
|
536 |
+
:rtype: float
|
537 |
+
"""
|
538 |
+
# Select coefficient based on type of ventilation of the wet bulb
|
539 |
+
if psychrometer == 1:
|
540 |
+
psy_coeff = 0.000662
|
541 |
+
elif psychrometer == 2:
|
542 |
+
psy_coeff = 0.000800
|
543 |
+
elif psychrometer == 3:
|
544 |
+
psy_coeff = 0.001200
|
545 |
+
else:
|
546 |
+
raise ValueError(
|
547 |
+
'psychrometer should be in range 1 to 3: {0!r}'.format(psychrometer))
|
548 |
+
|
549 |
+
return psy_coeff * atmos_pres
|
550 |
+
|
551 |
+
|
552 |
+
def rh_from_avp_svp(avp, svp):
|
553 |
+
"""
|
554 |
+
Calculate relative humidity as the ratio of actual vapour pressure
|
555 |
+
to saturation vapour pressure at the same temperature.
|
556 |
+
|
557 |
+
See Allen et al (1998), page 67 for details.
|
558 |
+
|
559 |
+
:param avp: Actual vapour pressure [units do not matter so long as they
|
560 |
+
are the same as for *svp*]. Can be estimated using functions whose
|
561 |
+
name begins with 'avp_from'.
|
562 |
+
:param svp: Saturated vapour pressure [units do not matter so long as they
|
563 |
+
are the same as for *avp*]. Can be estimated using ``svp_from_t()``.
|
564 |
+
:return: Relative humidity [%].
|
565 |
+
:rtype: float
|
566 |
+
"""
|
567 |
+
return 100.0 * avp / svp
|
568 |
+
|
569 |
+
|
570 |
+
def sol_dec(day_of_year):
|
571 |
+
"""
|
572 |
+
Calculate solar declination from day of the year.
|
573 |
+
|
574 |
+
Based on FAO equation 24 in Allen et al (1998).
|
575 |
+
|
576 |
+
:param day_of_year: Day of year integer between 1 and 365 or 366).
|
577 |
+
:return: solar declination [radians]
|
578 |
+
:rtype: float
|
579 |
+
"""
|
580 |
+
_check_doy(day_of_year)
|
581 |
+
return 0.409 * np.sin(((2.0 * np.pi / 365.0) * day_of_year - 1.39))
|
582 |
+
|
583 |
+
|
584 |
+
def sol_rad_from_sun_hours(daylight_hours, sunshine_hours, et_rad):
|
585 |
+
"""
|
586 |
+
Calculate incoming solar (or shortwave) radiation, *Rs* (radiation hitting
|
587 |
+
a horizontal plane after scattering by the atmosphere) from relative
|
588 |
+
sunshine duration.
|
589 |
+
|
590 |
+
If measured radiation data are not available this method is preferable
|
591 |
+
to calculating solar radiation from temperature. If a monthly mean is
|
592 |
+
required then divide the monthly number of sunshine hours by number of
|
593 |
+
days in the month and ensure that *et_rad* and *daylight_hours* was
|
594 |
+
calculated using the day of the year that corresponds to the middle of
|
595 |
+
the month.
|
596 |
+
|
597 |
+
Based on equations 34 and 35 in Allen et al (1998).
|
598 |
+
|
599 |
+
:param dl_hours: Number of daylight hours [hours]. Can be calculated
|
600 |
+
using ``daylight_hours()``.
|
601 |
+
:param sunshine_hours: Sunshine duration [hours].
|
602 |
+
:param et_rad: Extraterrestrial radiation [MJ m-2 day-1]. Can be
|
603 |
+
estimated using ``et_rad()``.
|
604 |
+
:return: Incoming solar (or shortwave) radiation [MJ m-2 day-1]
|
605 |
+
:rtype: float
|
606 |
+
"""
|
607 |
+
_check_day_hours(sunshine_hours, 'sun_hours')
|
608 |
+
_check_day_hours(daylight_hours, 'daylight_hours')
|
609 |
+
|
610 |
+
# 0.5 and 0.25 are default values of regression constants (Angstrom values)
|
611 |
+
# recommended by FAO when calibrated values are unavailable.
|
612 |
+
return (0.5 * sunshine_hours / daylight_hours + 0.25) * et_rad
|
613 |
+
|
614 |
+
|
615 |
+
def sol_rad_from_t(et_rad, cs_rad, tmin, tmax, coastal):
|
616 |
+
"""
|
617 |
+
Estimate incoming solar (or shortwave) radiation, *Rs*, (radiation hitting
|
618 |
+
a horizontal plane after scattering by the atmosphere) from min and max
|
619 |
+
temperature together with an empirical adjustment coefficient for
|
620 |
+
'interior' and 'coastal' regions.
|
621 |
+
|
622 |
+
The formula is based on equation 50 in Allen et al (1998) which is the
|
623 |
+
Hargreaves radiation formula (Hargreaves and Samani, 1982, 1985). This
|
624 |
+
method should be used only when solar radiation or sunshine hours data are
|
625 |
+
not available. It is only recommended for locations where it is not
|
626 |
+
possible to use radiation data from a regional station (either because
|
627 |
+
climate conditions are heterogeneous or data are lacking).
|
628 |
+
|
629 |
+
**NOTE**: this method is not suitable for island locations due to the
|
630 |
+
moderating effects of the surrounding water.
|
631 |
+
|
632 |
+
:param et_rad: Extraterrestrial radiation [MJ m-2 day-1]. Can be
|
633 |
+
estimated using ``et_rad()``.
|
634 |
+
:param cs_rad: Clear sky radiation [MJ m-2 day-1]. Can be estimated
|
635 |
+
using ``cs_rad()``.
|
636 |
+
:param tmin: Daily minimum temperature [deg C].
|
637 |
+
:param tmax: Daily maximum temperature [deg C].
|
638 |
+
:param coastal: ``True`` if site is a coastal location, situated on or
|
639 |
+
adjacent to coast of a large land mass and where air masses are
|
640 |
+
influenced by a nearby water body, ``False`` if interior location
|
641 |
+
where land mass dominates and air masses are not strongly influenced
|
642 |
+
by a large water body.
|
643 |
+
:return: Incoming solar (or shortwave) radiation (Rs) [MJ m-2 day-1].
|
644 |
+
:rtype: float
|
645 |
+
"""
|
646 |
+
# Determine value of adjustment coefficient [deg C-0.5] for
|
647 |
+
# coastal/interior locations
|
648 |
+
if coastal:
|
649 |
+
adj = 0.19
|
650 |
+
else:
|
651 |
+
adj = 0.16
|
652 |
+
|
653 |
+
sol_rad = adj * np.sqrt(tmax - tmin) * et_rad
|
654 |
+
|
655 |
+
# The solar radiation value is constrained by the clear sky radiation
|
656 |
+
return np.minimum(sol_rad, cs_rad)
|
657 |
+
|
658 |
+
|
659 |
+
def sol_rad_island(et_rad):
|
660 |
+
"""
|
661 |
+
Estimate incoming solar (or shortwave) radiation, *Rs* (radiation hitting
|
662 |
+
a horizontal plane after scattering by the atmosphere) for an island
|
663 |
+
location.
|
664 |
+
|
665 |
+
An island is defined as a land mass with width perpendicular to the
|
666 |
+
coastline <= 20 km. Use this method only if radiation data from
|
667 |
+
elsewhere on the island is not available.
|
668 |
+
|
669 |
+
**NOTE**: This method is only applicable for low altitudes (0-100 m)
|
670 |
+
and monthly calculations.
|
671 |
+
|
672 |
+
Based on FAO equation 51 in Allen et al (1998).
|
673 |
+
|
674 |
+
:param et_rad: Extraterrestrial radiation [MJ m-2 day-1]. Can be
|
675 |
+
estimated using ``et_rad()``.
|
676 |
+
:return: Incoming solar (or shortwave) radiation [MJ m-2 day-1].
|
677 |
+
:rtype: float
|
678 |
+
"""
|
679 |
+
return (0.7 * et_rad) - 4.0
|
680 |
+
|
681 |
+
|
682 |
+
def sunset_hour_angle(latitude, sol_dec):
|
683 |
+
"""
|
684 |
+
Calculate sunset hour angle (*Ws*) from latitude and solar
|
685 |
+
declination.
|
686 |
+
|
687 |
+
Based on FAO equation 25 in Allen et al (1998).
|
688 |
+
|
689 |
+
:param latitude: Latitude [radians]. Note: *latitude* should be negative
|
690 |
+
if it in the southern hemisphere, positive if in the northern
|
691 |
+
hemisphere.
|
692 |
+
:param sol_dec: Solar declination [radians]. Can be calculated using
|
693 |
+
``sol_dec()``.
|
694 |
+
:return: Sunset hour angle [radians].
|
695 |
+
:rtype: float
|
696 |
+
"""
|
697 |
+
_check_latitude_rad(latitude)
|
698 |
+
_check_sol_dec_rad(sol_dec)
|
699 |
+
|
700 |
+
cos_sha = -np.tan(latitude) * np.tan(sol_dec)
|
701 |
+
# If tmp is >= 1 there is no sunset, i.e. 24 hours of daylight
|
702 |
+
# If tmp is <= 1 there is no sunrise, i.e. 24 hours of darkness
|
703 |
+
# See http://www.itacanet.org/the-sun-as-a-source-of-energy/
|
704 |
+
# part-3-calculating-solar-angles/
|
705 |
+
# Domain of acos is -1 <= x <= 1 radians (this is not mentioned in FAO-56!)
|
706 |
+
return np.arccos(np.minimum(np.maximum(cos_sha, -1.0), 1.0))
|
707 |
+
|
708 |
+
|
709 |
+
def svp_from_t(t):
|
710 |
+
"""
|
711 |
+
Estimate saturation vapour pressure (*es*) from air temperature.
|
712 |
+
|
713 |
+
Based on equations 11 and 12 in Allen et al (1998).
|
714 |
+
|
715 |
+
:param t: Temperature [deg C]
|
716 |
+
:return: Saturation vapour pressure [kPa]
|
717 |
+
:rtype: float
|
718 |
+
"""
|
719 |
+
return 0.6108 * np.exp((17.27 * t) / (t + 237.3))
|
720 |
+
|
721 |
+
|
722 |
+
def wind_speed_2m(ws, z):
|
723 |
+
"""
|
724 |
+
Convert wind speed measured at different heights above the soil
|
725 |
+
surface to wind speed at 2 m above the surface, assuming a short grass
|
726 |
+
surface.
|
727 |
+
|
728 |
+
Based on FAO equation 47 in Allen et al (1998).
|
729 |
+
|
730 |
+
:param ws: Measured wind speed [m s-1]
|
731 |
+
:param z: Height of wind measurement above ground surface [m]
|
732 |
+
:return: Wind speed at 2 m above the surface [m s-1]
|
733 |
+
:rtype: float
|
734 |
+
"""
|
735 |
+
return ws * (4.87 / np.log((67.8 * z) - 5.42))
|
docs/pyeto/thornthwaite.py
ADDED
@@ -0,0 +1,119 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Calculate potential evapotranspiration using the Thornthwaite (1948 method)
|
3 |
+
|
4 |
+
:copyright: (c) 2015 by Mark Richards.
|
5 |
+
:license: BSD 3-Clause, see LICENSE.txt for more details.
|
6 |
+
|
7 |
+
References
|
8 |
+
----------
|
9 |
+
Thornthwaite CW (1948) An approach toward a rational classification of
|
10 |
+
climate. Geographical Review, 38, 55-94.
|
11 |
+
"""
|
12 |
+
|
13 |
+
import calendar
|
14 |
+
|
15 |
+
from . import fao
|
16 |
+
from ._check import check_latitude_rad as _check_latitude_rad
|
17 |
+
|
18 |
+
_MONTHDAYS = (31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31)
|
19 |
+
_LEAP_MONTHDAYS = (31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31)
|
20 |
+
|
21 |
+
|
22 |
+
def thornthwaite(monthly_t, monthly_mean_dlh, year=None):
|
23 |
+
"""
|
24 |
+
Estimate monthly potential evapotranspiration (PET) using the
|
25 |
+
Thornthwaite (1948) method.
|
26 |
+
|
27 |
+
Thornthwaite equation:
|
28 |
+
|
29 |
+
*PET* = 1.6 (*L*/12) (*N*/30) (10*Ta* / *I*)***a*
|
30 |
+
|
31 |
+
where:
|
32 |
+
|
33 |
+
* *Ta* is the mean daily air temperature [deg C, if negative use 0] of the
|
34 |
+
month being calculated
|
35 |
+
* *N* is the number of days in the month being calculated
|
36 |
+
* *L* is the mean day length [hours] of the month being calculated
|
37 |
+
* *a* = (6.75 x 10-7)*I***3 - (7.71 x 10-5)*I***2 + (1.792 x 10-2)*I* + 0.49239
|
38 |
+
* *I* is a heat index which depends on the 12 monthly mean temperatures and
|
39 |
+
is calculated as the sum of (*Tai* / 5)**1.514 for each month, where
|
40 |
+
Tai is the air temperature for each month in the year
|
41 |
+
|
42 |
+
:param monthly_t: Iterable containing mean daily air temperature for each
|
43 |
+
month of the year [deg C].
|
44 |
+
:param monthly_mean_dlh: Iterable containing mean daily daylight
|
45 |
+
hours for each month of the year (hours]. These can be calculated
|
46 |
+
using ``monthly_mean_daylight_hours()``.
|
47 |
+
:param year: Year for which PET is required. The only effect of year is
|
48 |
+
to change the number of days in February to 29 if it is a leap year.
|
49 |
+
If it is left as the default (None), then the year is assumed not to
|
50 |
+
be a leap year.
|
51 |
+
:return: Estimated monthly potential evaporation of each month of the year
|
52 |
+
[mm/month]
|
53 |
+
:rtype: List of floats
|
54 |
+
"""
|
55 |
+
if len(monthly_t) != 12:
|
56 |
+
raise ValueError(
|
57 |
+
'monthly_t should be length 12 but is length {0}.'
|
58 |
+
.format(len(monthly_t)))
|
59 |
+
if len(monthly_mean_dlh) != 12:
|
60 |
+
raise ValueError(
|
61 |
+
'monthly_mean_dlh should be length 12 but is length {0}.'
|
62 |
+
.format(len(monthly_mean_dlh)))
|
63 |
+
|
64 |
+
if year is None or not calendar.isleap(year):
|
65 |
+
month_days = _MONTHDAYS
|
66 |
+
else:
|
67 |
+
month_days = _LEAP_MONTHDAYS
|
68 |
+
|
69 |
+
# Negative temperatures should be set to zero
|
70 |
+
adj_monthly_t = [t * (t >= 0) for t in monthly_t]
|
71 |
+
|
72 |
+
# Calculate the heat index (I)
|
73 |
+
I = 0.0
|
74 |
+
for Tai in adj_monthly_t:
|
75 |
+
if Tai / 5.0 > 0.0:
|
76 |
+
I += (Tai / 5.0) ** 1.514
|
77 |
+
|
78 |
+
a = (6.75e-07 * I ** 3) - (7.71e-05 * I ** 2) + (1.792e-02 * I) + 0.49239
|
79 |
+
|
80 |
+
pet = []
|
81 |
+
for Ta, L, N in zip(adj_monthly_t, monthly_mean_dlh, month_days):
|
82 |
+
# Multiply by 10 to convert cm/month --> mm/month
|
83 |
+
pet.append(
|
84 |
+
1.6 * (L / 12.0) * (N / 30.0) * ((10.0 * Ta / I) ** a) * 10.0)
|
85 |
+
|
86 |
+
return pet
|
87 |
+
|
88 |
+
|
89 |
+
def monthly_mean_daylight_hours(latitude, year=None):
|
90 |
+
"""
|
91 |
+
Calculate mean daylight hours for each month of the year for a given
|
92 |
+
latitude.
|
93 |
+
|
94 |
+
:param latitude: Latitude [radians]
|
95 |
+
:param year: Year for the daylight hours are required. The only effect of
|
96 |
+
*year* is to change the number of days in Feb to 29 if it is a leap
|
97 |
+
year. If left as the default, None, then a normal (non-leap) year is
|
98 |
+
assumed.
|
99 |
+
:return: Mean daily daylight hours of each month of a year [hours]
|
100 |
+
:rtype: List of floats.
|
101 |
+
"""
|
102 |
+
_check_latitude_rad(latitude)
|
103 |
+
|
104 |
+
if year is None or not calendar.isleap(year):
|
105 |
+
month_days = _MONTHDAYS
|
106 |
+
else:
|
107 |
+
month_days = _LEAP_MONTHDAYS
|
108 |
+
monthly_mean_dlh = []
|
109 |
+
doy = 1 # Day of the year
|
110 |
+
for mdays in month_days:
|
111 |
+
dlh = 0.0 # Cumulative daylight hours for the month
|
112 |
+
for daynum in range(1, mdays + 1):
|
113 |
+
sd = fao.sol_dec(doy)
|
114 |
+
sha = fao.sunset_hour_angle(latitude, sd)
|
115 |
+
dlh += fao.daylight_hours(sha)
|
116 |
+
doy += 1
|
117 |
+
# Calc mean daylight hours of the month
|
118 |
+
monthly_mean_dlh.append(dlh / mdays)
|
119 |
+
return monthly_mean_dlh
|
docs/request_data.py
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import requests
|
2 |
+
import io
|
3 |
+
import logging
|
4 |
+
import xarray as xr
|
5 |
+
from datetime import date, timedelta
|
6 |
+
import json
|
7 |
+
|
8 |
+
|
9 |
+
with open('credentials.txt') as f:
|
10 |
+
pwd = f.readlines()
|
11 |
+
|
12 |
+
response = requests.post(
|
13 |
+
"https://api.ombreapp.fr/api/v1.0/links/token/",
|
14 |
+
data={"email": "[email protected]", "password": pwd, "permission": True},
|
15 |
+
)
|
16 |
+
|
17 |
+
token = response.json()["access"]
|
18 |
+
|
19 |
+
def get_air_sensors_data(plot_id, position,date_from = False, date_to= False, night=False):
|
20 |
+
|
21 |
+
if not date_from:
|
22 |
+
|
23 |
+
# Get Yesterday data by default
|
24 |
+
|
25 |
+
if night :
|
26 |
+
date_from = (date.today() - timedelta(2)).strftime("%Y-%m-%dT%H:%M:%S")[0:11] + "12:00:00"
|
27 |
+
date_to = (date.today() - timedelta(1)).strftime("%Y-%m-%dT%H:%M:%S")[0:11] + "11:50:00"
|
28 |
+
else :
|
29 |
+
date_from = (date.today() - timedelta(1)).strftime("%Y-%m-%dT%H:%M:%S")
|
30 |
+
date_to = date_from[0:11] + "23:50:00"
|
31 |
+
|
32 |
+
headers = {'Authorization': f"Bearer {token}", "Accept": "application/x-netcdf"}
|
33 |
+
# Get Climatic dataset as netcdf file
|
34 |
+
response = requests.get(
|
35 |
+
f"https://api.ombreapp.fr/api/v2.0/plots/{plot_id}/climatic_dataset/",
|
36 |
+
params={
|
37 |
+
"start_time": date_from,
|
38 |
+
"end_time": date_to,
|
39 |
+
"position": position
|
40 |
+
},
|
41 |
+
headers=headers
|
42 |
+
)
|
43 |
+
|
44 |
+
if response.status_code == 200:
|
45 |
+
# Open Dataset
|
46 |
+
ds_out = xr.open_dataset(io.BytesIO(response.content))
|
47 |
+
else:
|
48 |
+
logging.error(f"Error {response.status_code}: {response.content}")
|
49 |
+
ds_out
|
50 |
+
|
51 |
+
df_air = ds_out[['air_temperature','relative_humidity','photon_flux_density','wind_speed']].to_dataframe()
|
52 |
+
return df_air
|
53 |
+
|
54 |
+
def get_lat_lon(plot_id):
|
55 |
+
headers = {'Authorization': f"Bearer {token}"}
|
56 |
+
|
57 |
+
response = requests.get(
|
58 |
+
"https://api.ombreapp.fr/api/v2.0/plots/",
|
59 |
+
headers=headers
|
60 |
+
)
|
61 |
+
|
62 |
+
plots = json.loads(response.content)
|
63 |
+
plot = [plots[i] for i in range(len(plots)) if plots[i]['id'] == plot_id][0]
|
64 |
+
|
65 |
+
return (plot['zone']['coordinates'][0][0][1],plot['zone']['coordinates'][0][0][0])
|