Spaces:
Runtime error
Runtime error
Akram Sanad
commited on
Commit
·
a8dd096
1
Parent(s):
c5bafe6
fixed legend, added doted lines for forecast
Browse files- visualize/visualize.py +61 -33
visualize/visualize.py
CHANGED
@@ -10,7 +10,9 @@ import os
|
|
10 |
from forecast import get_forecast_datasets, get_forecast_data
|
11 |
|
12 |
|
13 |
-
def concatenate_historic_forecast(
|
|
|
|
|
14 |
historic["period"] = "historique"
|
15 |
forecast["period"] = value_period_col
|
16 |
historic = historic[cols_to_keep]
|
@@ -87,8 +89,10 @@ def visualize_climate(
|
|
87 |
y=segment[column], # Precipitation values on y-axis
|
88 |
mode="lines",
|
89 |
name=f"{condition_value}",
|
|
|
|
|
90 |
line=dict(color="blue" if condition_value == "historique" else "purple"),
|
91 |
-
|
92 |
)
|
93 |
)
|
94 |
else:
|
@@ -98,7 +102,9 @@ def visualize_climate(
|
|
98 |
y=segment[column], # Precipitation values on y-axis
|
99 |
mode="lines",
|
100 |
name=f"{condition_value}",
|
101 |
-
|
|
|
|
|
102 |
)
|
103 |
)
|
104 |
|
@@ -107,38 +113,54 @@ def visualize_climate(
|
|
107 |
concatenated_pessimist = concatenated_pessimist.sort_values(by=x_axis)
|
108 |
for condition_value in concatenated_pessimist["period"].unique():
|
109 |
segment = concatenated_pessimist[concatenated_pessimist["period"] == condition_value]
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
117 |
)
|
118 |
-
)
|
119 |
-
|
120 |
# Interpolation for the pessimistic scenario...
|
121 |
interpolation_pessimist = concatenated_pessimist[concatenated_pessimist[x_axis] > 2023]
|
|
|
122 |
fig.add_trace(
|
123 |
go.Scatter(
|
124 |
x=interpolation_pessimist[x_axis],
|
125 |
y=interpolation_pessimist[column].interpolate(),
|
126 |
mode="lines",
|
127 |
name = "forecast scénario pessimiste",
|
128 |
-
|
129 |
-
showlegend=False
|
130 |
-
|
|
|
131 |
),
|
132 |
)
|
133 |
interpolation_moderate = concatenated_moderate[concatenated_moderate[x_axis] > 2023]
|
|
|
134 |
fig.add_trace(
|
135 |
go.Scatter(
|
136 |
x=interpolation_moderate[x_axis],
|
137 |
y=interpolation_moderate[column].interpolate(),
|
138 |
mode="lines",
|
139 |
name = "forecast scénario modéré",
|
140 |
-
|
141 |
-
|
|
|
142 |
|
143 |
),
|
144 |
)
|
@@ -150,7 +172,8 @@ def visualize_climate(
|
|
150 |
|
151 |
return fig
|
152 |
|
153 |
-
|
|
|
154 |
df[col_to_agg] = df.groupby("year")[col_to_agg].transform(operation)
|
155 |
return df
|
156 |
|
@@ -167,12 +190,13 @@ def generate_plots(
|
|
167 |
plots.append(visualize_climate(moderate, historic, pessimist, x_axes[i], col))
|
168 |
return plots
|
169 |
|
|
|
170 |
def get_plots():
|
171 |
cols_to_plot = [
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
]
|
176 |
cols_to_keep = [
|
177 |
"Precipitation (mm)",
|
178 |
"Near Surface Air Temperature (°C)",
|
@@ -200,22 +224,26 @@ def get_plots():
|
|
200 |
|
201 |
moderate = get_forecast_data(latitude, longitude, "moderate")
|
202 |
pessimist = get_forecast_data(latitude, longitude, "pessimist")
|
203 |
-
moderate = moderate.rename(
|
|
|
|
|
204 |
moderate["time"] = pd.to_datetime(moderate["time"])
|
205 |
-
moderate = moderate.sort_values(
|
206 |
-
moderate[
|
207 |
-
moderate["Precipitation (mm)"] = moderate["Precipitation (mm)"]*31536000
|
208 |
-
pessimist = pessimist.rename(
|
|
|
|
|
209 |
pessimist["time"] = pd.to_datetime(pessimist["time"])
|
210 |
-
pessimist = pessimist.sort_values(
|
211 |
-
pessimist[
|
212 |
-
pessimist["Precipitation (mm)"] = pessimist["Precipitation (mm)"]*31536000
|
213 |
pessimist["period"] = "forecast scénario pessimiste"
|
214 |
-
historic[
|
215 |
-
historic["Precipitation (mm)"] = historic["Precipitation (mm)"]*8760.0
|
216 |
for col in cols_to_plot:
|
217 |
moderate = aggregate_yearly(moderate, col)
|
218 |
historic = aggregate_yearly(historic, col)
|
219 |
pessimist = aggregate_yearly(pessimist, col)
|
220 |
plots = generate_plots(moderate, historic, pessimist, x_axes, cols_to_plot)
|
221 |
-
return plots
|
|
|
10 |
from forecast import get_forecast_datasets, get_forecast_data
|
11 |
|
12 |
|
13 |
+
def concatenate_historic_forecast(
|
14 |
+
historic, forecast, cols_to_keep, value_period_col="forecast scénario modéré"
|
15 |
+
):
|
16 |
historic["period"] = "historique"
|
17 |
forecast["period"] = value_period_col
|
18 |
historic = historic[cols_to_keep]
|
|
|
89 |
y=segment[column], # Precipitation values on y-axis
|
90 |
mode="lines",
|
91 |
name=f"{condition_value}",
|
92 |
+
legendgroup='group1',
|
93 |
+
showlegend=False,
|
94 |
line=dict(color="blue" if condition_value == "historique" else "purple"),
|
95 |
+
|
96 |
)
|
97 |
)
|
98 |
else:
|
|
|
102 |
y=segment[column], # Precipitation values on y-axis
|
103 |
mode="lines",
|
104 |
name=f"{condition_value}",
|
105 |
+
legendgroup='group2',
|
106 |
+
showlegend=False,
|
107 |
+
line=dict(color="blue" if condition_value == "historique" else "purple", dash='dot'),
|
108 |
)
|
109 |
)
|
110 |
|
|
|
113 |
concatenated_pessimist = concatenated_pessimist.sort_values(by=x_axis)
|
114 |
for condition_value in concatenated_pessimist["period"].unique():
|
115 |
segment = concatenated_pessimist[concatenated_pessimist["period"] == condition_value]
|
116 |
+
if condition_value == "historique":
|
117 |
+
fig.add_trace(
|
118 |
+
go.Scatter(
|
119 |
+
x=segment[x_axis], # Years on x-axis
|
120 |
+
y=segment[column], # Precipitation values on y-axis
|
121 |
+
mode="lines",
|
122 |
+
name=f"{condition_value}",
|
123 |
+
legendgroup='group1',
|
124 |
+
line=dict(color="blue" if condition_value == "historique" else "orange", dash='dot' if condition_value != "historique" else None),
|
125 |
+
)
|
126 |
+
)
|
127 |
+
else:
|
128 |
+
fig.add_trace(
|
129 |
+
go.Scatter(
|
130 |
+
x=segment[x_axis], # Years on x-axis
|
131 |
+
y=segment[column], # Precipitation values on y-axis
|
132 |
+
mode="lines",
|
133 |
+
name=f"{condition_value}",
|
134 |
+
legendgroup='group3',
|
135 |
+
line=dict(color="blue" if condition_value == "historique" else "orange", dash='dot' if condition_value != "historique" else None),
|
136 |
+
)
|
137 |
)
|
|
|
|
|
138 |
# Interpolation for the pessimistic scenario...
|
139 |
interpolation_pessimist = concatenated_pessimist[concatenated_pessimist[x_axis] > 2023]
|
140 |
+
interpolation_pessimist = interpolation_pessimist[interpolation_pessimist[x_axis] <= 2025]
|
141 |
fig.add_trace(
|
142 |
go.Scatter(
|
143 |
x=interpolation_pessimist[x_axis],
|
144 |
y=interpolation_pessimist[column].interpolate(),
|
145 |
mode="lines",
|
146 |
name = "forecast scénario pessimiste",
|
147 |
+
legendgroup='group3',
|
148 |
+
showlegend=False,
|
149 |
+
line=dict(color="orange", dash='dot'),
|
150 |
+
|
151 |
),
|
152 |
)
|
153 |
interpolation_moderate = concatenated_moderate[concatenated_moderate[x_axis] > 2023]
|
154 |
+
interpolation_moderate = interpolation_moderate[interpolation_moderate[x_axis] <= 2025]
|
155 |
fig.add_trace(
|
156 |
go.Scatter(
|
157 |
x=interpolation_moderate[x_axis],
|
158 |
y=interpolation_moderate[column].interpolate(),
|
159 |
mode="lines",
|
160 |
name = "forecast scénario modéré",
|
161 |
+
legendgroup='group2',
|
162 |
+
line=dict(color="purple", dash='dot'),
|
163 |
+
|
164 |
|
165 |
),
|
166 |
)
|
|
|
172 |
|
173 |
return fig
|
174 |
|
175 |
+
|
176 |
+
def aggregate_yearly(df, col_to_agg, operation="mean"):
|
177 |
df[col_to_agg] = df.groupby("year")[col_to_agg].transform(operation)
|
178 |
return df
|
179 |
|
|
|
190 |
plots.append(visualize_climate(moderate, historic, pessimist, x_axes[i], col))
|
191 |
return plots
|
192 |
|
193 |
+
|
194 |
def get_plots():
|
195 |
cols_to_plot = [
|
196 |
+
"Precipitation (mm)",
|
197 |
+
"Near Surface Air Temperature (°C)",
|
198 |
+
"Surface Downwelling Shortwave Radiation (W/m²)",
|
199 |
+
]
|
200 |
cols_to_keep = [
|
201 |
"Precipitation (mm)",
|
202 |
"Near Surface Air Temperature (°C)",
|
|
|
224 |
|
225 |
moderate = get_forecast_data(latitude, longitude, "moderate")
|
226 |
pessimist = get_forecast_data(latitude, longitude, "pessimist")
|
227 |
+
moderate = moderate.rename(
|
228 |
+
columns={"Precipitation (kg m-2 s-1)": "Precipitation (mm)"}
|
229 |
+
)
|
230 |
moderate["time"] = pd.to_datetime(moderate["time"])
|
231 |
+
moderate = moderate.sort_values("time")
|
232 |
+
moderate["year"] = moderate["time"].dt.year
|
233 |
+
moderate["Precipitation (mm)"] = moderate["Precipitation (mm)"] * 31536000
|
234 |
+
pessimist = pessimist.rename(
|
235 |
+
columns={"Precipitation (kg m-2 s-1)": "Precipitation (mm)"}
|
236 |
+
)
|
237 |
pessimist["time"] = pd.to_datetime(pessimist["time"])
|
238 |
+
pessimist = pessimist.sort_values("time")
|
239 |
+
pessimist["year"] = pessimist["time"].dt.year
|
240 |
+
pessimist["Precipitation (mm)"] = pessimist["Precipitation (mm)"] * 31536000
|
241 |
pessimist["period"] = "forecast scénario pessimiste"
|
242 |
+
historic["year"] = historic["time"].dt.year
|
243 |
+
historic["Precipitation (mm)"] = historic["Precipitation (mm)"] * 8760.0
|
244 |
for col in cols_to_plot:
|
245 |
moderate = aggregate_yearly(moderate, col)
|
246 |
historic = aggregate_yearly(historic, col)
|
247 |
pessimist = aggregate_yearly(pessimist, col)
|
248 |
plots = generate_plots(moderate, historic, pessimist, x_axes, cols_to_plot)
|
249 |
+
return plots
|