Spaces:
Runtime error
Runtime error
Upload forecast.py
Browse filesUpdate with water deficit
- forecast.py +87 -28
forecast.py
CHANGED
@@ -1,6 +1,10 @@
|
|
1 |
import os
|
2 |
import xarray as xr
|
3 |
import pandas as pd
|
|
|
|
|
|
|
|
|
4 |
|
5 |
|
6 |
# Mapping of variable names to metadata (title, unit, and NetCDF variable key)
|
@@ -18,6 +22,7 @@ VARIABLE_MAPPING = {
|
|
18 |
}
|
19 |
|
20 |
|
|
|
21 |
def load_data(variable: str, ds: xr.Dataset, lat: float, lon: float) -> xr.DataArray:
|
22 |
"""
|
23 |
Load data for a given variable from the dataset at the nearest latitude and longitude.
|
@@ -33,17 +38,16 @@ def load_data(variable: str, ds: xr.Dataset, lat: float, lon: float) -> xr.DataA
|
|
33 |
"""
|
34 |
try:
|
35 |
data = ds[variable].sel(lat=lat, lon=lon, method="nearest")
|
36 |
-
|
37 |
# Convert temperature from Kelvin to Celsius for specific variables
|
38 |
if variable in ["tas", "tasmin", "tasmax"]:
|
39 |
data = data - 273.15
|
40 |
-
|
41 |
return data
|
42 |
except Exception as e:
|
43 |
print(f"Error loading {variable}: {e}")
|
44 |
return None
|
45 |
|
46 |
|
|
|
47 |
def get_forecast_datasets(climate_sub_files: list) -> dict:
|
48 |
"""
|
49 |
Get the forecast datasets by loading NetCDF files for each variable.
|
@@ -56,12 +60,10 @@ def get_forecast_datasets(climate_sub_files: list) -> dict:
|
|
56 |
"""
|
57 |
datasets = {}
|
58 |
|
59 |
-
# Iterate over each file and check if the variable exists in the filename
|
60 |
for file_path in climate_sub_files:
|
61 |
filename = os.path.basename(file_path)
|
62 |
-
|
63 |
for long_name, (title, unit, var_key) in VARIABLE_MAPPING.items():
|
64 |
-
if var_key in filename:
|
65 |
if var_key in ["tas", "tasmax", "tasmin"]:
|
66 |
if f"_{var_key}_" in f"_{filename}_" or filename.endswith(f"_{var_key}.nc"):
|
67 |
datasets[long_name] = xr.open_dataset(file_path, engine="netcdf4")
|
@@ -71,6 +73,7 @@ def get_forecast_datasets(climate_sub_files: list) -> dict:
|
|
71 |
return datasets
|
72 |
|
73 |
|
|
|
74 |
def get_forecast_data(datasets: dict, lat: float, lon: float) -> pd.DataFrame:
|
75 |
"""
|
76 |
Extract climate data from the forecast datasets for a given location and convert to a DataFrame.
|
@@ -85,41 +88,97 @@ def get_forecast_data(datasets: dict, lat: float, lon: float) -> pd.DataFrame:
|
|
85 |
"""
|
86 |
time_series_data = {'time': []}
|
87 |
|
88 |
-
# Iterate over the variable mapping to load and process data for each variable
|
89 |
for long_name, (title, unit, variable) in VARIABLE_MAPPING.items():
|
90 |
print(f"Processing {long_name} ({title}, {unit}, {variable})...")
|
91 |
-
|
92 |
-
# Load the data for the current variable
|
93 |
data = load_data(variable, datasets[long_name], lat, lon)
|
94 |
-
|
95 |
-
if data is not None:
|
96 |
-
print(f"Time values: {data.time.values[:5]}") # Preview first few time values
|
97 |
-
print(f"Data values: {data.values[:5]}") # Preview first few data values
|
98 |
|
99 |
-
|
100 |
time_series_data['time'] = data.time.values
|
101 |
-
|
102 |
-
# Format the column name with unit (e.g., "Precipitation (kg m-2 s-1)")
|
103 |
column_name = f"{title} ({unit})"
|
104 |
time_series_data[column_name] = data.values
|
105 |
|
106 |
-
# Convert the time series data into a pandas DataFrame
|
107 |
return pd.DataFrame(time_series_data)
|
108 |
|
109 |
|
110 |
-
#
|
111 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
112 |
|
113 |
-
#
|
114 |
-
|
115 |
-
climate_sub_files = [os.path.join(e, i) for e in climate_sub_folder for i in os.listdir(e) if i.endswith('.nc')]
|
116 |
|
117 |
-
|
118 |
-
datasets = get_forecast_datasets(climate_sub_files)
|
119 |
|
120 |
-
# Get the forecast data for a specific latitude and longitude
|
121 |
-
lat, lon = 47.0, 5.0 # Example coordinates
|
122 |
-
final_df = get_forecast_data(datasets, lat, lon)
|
123 |
|
124 |
-
#
|
125 |
-
|
|
|
|
1 |
import os
|
2 |
import xarray as xr
|
3 |
import pandas as pd
|
4 |
+
from matplotlib import pyplot as plt
|
5 |
+
import docs.agro_indicators as agro_indicators
|
6 |
+
import numpy as np
|
7 |
+
from datetime import datetime
|
8 |
|
9 |
|
10 |
# Mapping of variable names to metadata (title, unit, and NetCDF variable key)
|
|
|
22 |
}
|
23 |
|
24 |
|
25 |
+
# Function to load data for a given variable from the dataset at the nearest latitude and longitude
|
26 |
def load_data(variable: str, ds: xr.Dataset, lat: float, lon: float) -> xr.DataArray:
|
27 |
"""
|
28 |
Load data for a given variable from the dataset at the nearest latitude and longitude.
|
|
|
38 |
"""
|
39 |
try:
|
40 |
data = ds[variable].sel(lat=lat, lon=lon, method="nearest")
|
|
|
41 |
# Convert temperature from Kelvin to Celsius for specific variables
|
42 |
if variable in ["tas", "tasmin", "tasmax"]:
|
43 |
data = data - 273.15
|
|
|
44 |
return data
|
45 |
except Exception as e:
|
46 |
print(f"Error loading {variable}: {e}")
|
47 |
return None
|
48 |
|
49 |
|
50 |
+
# Function to load forecast datasets from NetCDF files based on variable mapping
|
51 |
def get_forecast_datasets(climate_sub_files: list) -> dict:
|
52 |
"""
|
53 |
Get the forecast datasets by loading NetCDF files for each variable.
|
|
|
60 |
"""
|
61 |
datasets = {}
|
62 |
|
|
|
63 |
for file_path in climate_sub_files:
|
64 |
filename = os.path.basename(file_path)
|
|
|
65 |
for long_name, (title, unit, var_key) in VARIABLE_MAPPING.items():
|
66 |
+
if var_key in filename:
|
67 |
if var_key in ["tas", "tasmax", "tasmin"]:
|
68 |
if f"_{var_key}_" in f"_{filename}_" or filename.endswith(f"_{var_key}.nc"):
|
69 |
datasets[long_name] = xr.open_dataset(file_path, engine="netcdf4")
|
|
|
73 |
return datasets
|
74 |
|
75 |
|
76 |
+
# Function to extract climate data from forecast datasets and convert to a DataFrame
|
77 |
def get_forecast_data(datasets: dict, lat: float, lon: float) -> pd.DataFrame:
|
78 |
"""
|
79 |
Extract climate data from the forecast datasets for a given location and convert to a DataFrame.
|
|
|
88 |
"""
|
89 |
time_series_data = {'time': []}
|
90 |
|
|
|
91 |
for long_name, (title, unit, variable) in VARIABLE_MAPPING.items():
|
92 |
print(f"Processing {long_name} ({title}, {unit}, {variable})...")
|
|
|
|
|
93 |
data = load_data(variable, datasets[long_name], lat, lon)
|
|
|
|
|
|
|
|
|
94 |
|
95 |
+
if data is not None:
|
96 |
time_series_data['time'] = data.time.values
|
|
|
|
|
97 |
column_name = f"{title} ({unit})"
|
98 |
time_series_data[column_name] = data.values
|
99 |
|
|
|
100 |
return pd.DataFrame(time_series_data)
|
101 |
|
102 |
|
103 |
+
# Function to compute reference evapotranspiration (ET0)
|
104 |
+
def compute_et0(df: pd.DataFrame, latitude: float, longitude: float):
|
105 |
+
"""
|
106 |
+
Compute reference evapotranspiration using the provided climate data.
|
107 |
+
|
108 |
+
Args:
|
109 |
+
df (pd.DataFrame): DataFrame containing climate data.
|
110 |
+
latitude (float): Latitude of the location.
|
111 |
+
longitude (float): Longitude of the location.
|
112 |
+
|
113 |
+
Returns:
|
114 |
+
arraylike: Daily reference evapotranspiration.
|
115 |
+
"""
|
116 |
+
irradiance = df.irradiance
|
117 |
+
Tmin = df.air_temperature_min
|
118 |
+
Tmax = df.air_temperature_max
|
119 |
+
T = (Tmin + Tmax) / 2 # Average temperature
|
120 |
+
RHmin = df.relative_humidity_min
|
121 |
+
RHmax = df.relative_humidity_max
|
122 |
+
WS = df.wind_speed
|
123 |
+
JJulien = df.day_of_year
|
124 |
+
|
125 |
+
et0_values = agro_indicators.et0(irradiance, T, Tmax, Tmin, RHmin, RHmax, WS, JJulien, latitude, longitude)
|
126 |
+
return et0_values
|
127 |
+
|
128 |
+
|
129 |
+
# Main processing workflow
|
130 |
+
def main():
|
131 |
+
# Define the directory to parse
|
132 |
+
folder_to_parse = "../climate_data_pessimist/"
|
133 |
+
|
134 |
+
# Retrieve the subfolders and files to parse
|
135 |
+
climate_sub_folder = [os.path.join(folder_to_parse, e) for e in os.listdir(folder_to_parse) if os.path.isdir(os.path.join(folder_to_parse, e))]
|
136 |
+
climate_sub_files = [os.path.join(e, i) for e in climate_sub_folder for i in os.listdir(e) if i.endswith('.nc')]
|
137 |
+
|
138 |
+
# Load the forecast datasets
|
139 |
+
datasets = get_forecast_datasets(climate_sub_files)
|
140 |
+
|
141 |
+
# Get the forecast data for a specific latitude and longitude
|
142 |
+
lat, lon = 47.0, 5.0 # Example coordinates
|
143 |
+
final_df = get_forecast_data(datasets, lat, lon)
|
144 |
+
|
145 |
+
coef = 1
|
146 |
+
|
147 |
+
# Display the resulting DataFrame
|
148 |
+
print(final_df.head())
|
149 |
+
|
150 |
+
# Preprocess the data
|
151 |
+
data_test = final_df.copy()
|
152 |
+
data_test["irradiance"] = data_test['Surface Downwelling Shortwave Radiation (W/m²)'] * coef
|
153 |
+
data_test["air_temperature_min"] = data_test['Daily Minimum Near Surface Air Temperature (°C)']
|
154 |
+
data_test["air_temperature_max"] = data_test['Daily Maximum Near Surface Air Temperature (°C)']
|
155 |
+
data_test["relative_humidity_min"] = data_test['Relative Humidity (%)']
|
156 |
+
data_test["relative_humidity_max"] = data_test['Relative Humidity (%)']
|
157 |
+
data_test["wind_speed"] = data_test['Near Surface Wind Speed (m/s)']
|
158 |
+
|
159 |
+
# Convert 'time' to datetime and calculate Julian day
|
160 |
+
data_test['time'] = pd.to_datetime(data_test['time'], errors='coerce')
|
161 |
+
data_test['day_of_year'] = data_test['time'].dt.dayofyear
|
162 |
+
|
163 |
+
# Compute ET0
|
164 |
+
et0 = compute_et0(data_test, lat, lon)
|
165 |
+
data_test['Evaporation (mm/day)'] = et0
|
166 |
+
|
167 |
+
# Convert Precipitation from kg/m²/s to mm/day
|
168 |
+
data_test['Precipitation (mm/day)'] = 86400 * data_test['Precipitation (kg m-2 s-1)']
|
169 |
+
|
170 |
+
# Calculate Water Deficit: Water Deficit = ET0 - P + M
|
171 |
+
data_test['Water Deficit (mm/day)'] = (
|
172 |
+
(data_test['Evaporation (mm/day)'] - (data_test['Precipitation (mm/day)']) +
|
173 |
+
data_test['Moisture in Upper Portion of Soil Column (kg m-2)'])
|
174 |
+
)
|
175 |
|
176 |
+
# Display the resulting DataFrame with Water Deficit
|
177 |
+
print(data_test[['Water Deficit (mm/day)', 'Precipitation (mm/day)', 'Evaporation (mm/day)', 'Moisture in Upper Portion of Soil Column (kg m-2)']])
|
|
|
178 |
|
179 |
+
return data_test
|
|
|
180 |
|
|
|
|
|
|
|
181 |
|
182 |
+
# Run the main function
|
183 |
+
if __name__ == "__main__":
|
184 |
+
main()
|