lucaordronneau commited on
Commit
af358f2
·
verified ·
1 Parent(s): e76e66b

Upload forecast.py

Browse files

Forecast data upload

Files changed (1) hide show
  1. forecast.py +125 -0
forecast.py ADDED
@@ -0,0 +1,125 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import xarray as xr
3
+ import pandas as pd
4
+
5
+
6
+ # Mapping of variable names to metadata (title, unit, and NetCDF variable key)
7
+ VARIABLE_MAPPING = {
8
+ 'surface_downwelling_shortwave_radiation': ('Surface Downwelling Shortwave Radiation', 'W/m²', 'rsds'),
9
+ 'moisture_in_upper_portion_of_soil_column': ('Moisture in Upper Portion of Soil Column', 'kg m-2', 'mrsos'),
10
+ 'precipitation': ('Precipitation', 'kg m-2 s-1', 'pr'),
11
+ 'near_surface_relative_humidity': ('Relative Humidity', '%', 'hurs'),
12
+ 'evaporation_including_sublimation_and_transpiration': ('Evaporation (including sublimation and transpiration)', 'kg m-2 s-1', 'evspsbl'),
13
+ 'total_runoff': ('Total Runoff', 'kg m-2 s-1', 'mrro'),
14
+ 'daily_minimum_near_surface_air_temperature': ('Daily Minimum Near Surface Air Temperature', '°C', 'tasmin'),
15
+ 'daily_maximum_near_surface_air_temperature': ('Daily Maximum Near Surface Air Temperature', '°C', 'tasmax'),
16
+ 'near_surface_wind_speed': ('Near Surface Wind Speed', 'm/s', 'sfcWind'),
17
+ 'near_surface_air_temperature': ('Near Surface Air Temperature', '°C', 'tas'),
18
+ }
19
+
20
+
21
+ def load_data(variable: str, ds: xr.Dataset, lat: float, lon: float) -> xr.DataArray:
22
+ """
23
+ Load data for a given variable from the dataset at the nearest latitude and longitude.
24
+
25
+ Args:
26
+ variable (str): The variable to extract from the dataset.
27
+ ds (xr.Dataset): The xarray dataset containing climate data.
28
+ lat (float): Latitude for nearest data point.
29
+ lon (float): Longitude for nearest data point.
30
+
31
+ Returns:
32
+ xr.DataArray: The data array containing the variable values for the specified location.
33
+ """
34
+ try:
35
+ data = ds[variable].sel(lat=lat, lon=lon, method="nearest")
36
+
37
+ # Convert temperature from Kelvin to Celsius for specific variables
38
+ if variable in ["tas", "tasmin", "tasmax"]:
39
+ data = data - 273.15
40
+
41
+ return data
42
+ except Exception as e:
43
+ print(f"Error loading {variable}: {e}")
44
+ return None
45
+
46
+
47
+ def get_forecast_datasets(climate_sub_files: list) -> dict:
48
+ """
49
+ Get the forecast datasets by loading NetCDF files for each variable.
50
+
51
+ Args:
52
+ climate_sub_files (list): List of file paths to the NetCDF files.
53
+
54
+ Returns:
55
+ dict: Dictionary with variable names as keys and xarray datasets as values.
56
+ """
57
+ datasets = {}
58
+
59
+ # Iterate over each file and check if the variable exists in the filename
60
+ for file_path in climate_sub_files:
61
+ filename = os.path.basename(file_path)
62
+
63
+ for long_name, (title, unit, var_key) in VARIABLE_MAPPING.items():
64
+ if var_key in filename: # Check for presence of variable in filename
65
+ if var_key in ["tas", "tasmax", "tasmin"]:
66
+ if f"_{var_key}_" in f"_{filename}_" or filename.endswith(f"_{var_key}.nc"):
67
+ datasets[long_name] = xr.open_dataset(file_path, engine="netcdf4")
68
+ else:
69
+ datasets[long_name] = xr.open_dataset(file_path, engine="netcdf4")
70
+
71
+ return datasets
72
+
73
+
74
+ def get_forecast_data(datasets: dict, lat: float, lon: float) -> pd.DataFrame:
75
+ """
76
+ Extract climate data from the forecast datasets for a given location and convert to a DataFrame.
77
+
78
+ Args:
79
+ datasets (dict): Dictionary of datasets, one for each variable.
80
+ lat (float): Latitude of the location to extract data for.
81
+ lon (float): Longitude of the location to extract data for.
82
+
83
+ Returns:
84
+ pd.DataFrame: A DataFrame containing time series data for each variable.
85
+ """
86
+ time_series_data = {'time': []}
87
+
88
+ # Iterate over the variable mapping to load and process data for each variable
89
+ for long_name, (title, unit, variable) in VARIABLE_MAPPING.items():
90
+ print(f"Processing {long_name} ({title}, {unit}, {variable})...")
91
+
92
+ # Load the data for the current variable
93
+ data = load_data(variable, datasets[long_name], lat, lon)
94
+
95
+ if data is not None:
96
+ print(f"Time values: {data.time.values[:5]}") # Preview first few time values
97
+ print(f"Data values: {data.values[:5]}") # Preview first few data values
98
+
99
+ # Add the time values to the 'time' list
100
+ time_series_data['time'] = data.time.values
101
+
102
+ # Format the column name with unit (e.g., "Precipitation (kg m-2 s-1)")
103
+ column_name = f"{title} ({unit})"
104
+ time_series_data[column_name] = data.values
105
+
106
+ # Convert the time series data into a pandas DataFrame
107
+ return pd.DataFrame(time_series_data)
108
+
109
+
110
+ # Define the directory to parse
111
+ folder_to_parse = "climate_data_pessimist/"
112
+
113
+ # Retrieve the subfolders and files to parse
114
+ climate_sub_folder = [os.path.join(folder_to_parse, e) for e in os.listdir(folder_to_parse) if os.path.isdir(os.path.join(folder_to_parse, e))]
115
+ climate_sub_files = [os.path.join(e, i) for e in climate_sub_folder for i in os.listdir(e) if i.endswith('.nc')]
116
+
117
+ # Load the forecast datasets
118
+ datasets = get_forecast_datasets(climate_sub_files)
119
+
120
+ # Get the forecast data for a specific latitude and longitude
121
+ lat, lon = 47.0, 5.0 # Example coordinates
122
+ final_df = get_forecast_data(datasets, lat, lon)
123
+
124
+ # Display the resulting DataFrame
125
+ print(final_df.head())