Spaces:
Runtime error
Runtime error
Hugo Massonnat
commited on
Commit
·
d93b3a4
1
Parent(s):
f0b11dd
change yield plot function for plots with no shading
Browse files- compute_yield.py +35 -59
compute_yield.py
CHANGED
@@ -131,7 +131,7 @@ def plot_yield(
|
|
131 |
culture: str = "Colza d'hiver",
|
132 |
region: str = "Bourgogne-Franche-Comté",
|
133 |
scenario: str = "pessimist",
|
134 |
-
shading_coef: float = 0
|
135 |
) -> plt.Figure:
|
136 |
monthly_forecast = compute_yield_forecast(
|
137 |
latitude=latitude,
|
@@ -141,33 +141,38 @@ def plot_yield(
|
|
141 |
shading_coef=0.,
|
142 |
)
|
143 |
|
144 |
-
monthly_forecast_with_shading = compute_yield_forecast(
|
145 |
-
latitude=latitude,
|
146 |
-
longitude=longitude,
|
147 |
-
culture=culture,
|
148 |
-
scenario=scenario,
|
149 |
-
shading_coef=shading_coef,
|
150 |
-
)
|
151 |
-
|
152 |
yield_forecast = get_annual_yield(monthly_forecast)
|
153 |
-
yield_forecast_with_shading = get_annual_yield(monthly_forecast_with_shading)
|
154 |
-
|
155 |
n_years = 10
|
156 |
-
years = 2025 + np.arange(len(
|
|
|
157 |
aggregated_forecasts = yield_forecast.rolling(n_years).sum()[years % n_years == 0]
|
158 |
-
aggregated_forecasts_with_shading = yield_forecast_with_shading.rolling(n_years).sum()[years % n_years == 0]
|
159 |
|
160 |
width = 3 # the width of the bars
|
161 |
fig, ax = plt.subplots(layout='constrained')
|
162 |
-
aggregated_years = years[years % n_years == 0]
|
163 |
_ = ax.bar(aggregated_years, aggregated_forecasts, width, label="No shading")
|
164 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
165 |
ax.legend()
|
|
|
|
|
166 |
ax.set_ylim(150)
|
167 |
|
168 |
return fig
|
169 |
|
170 |
if __name__ == '__main__':
|
|
|
|
|
171 |
cultures = ["Colza d'hiver", "Blé tendre d'hiver", "Orge d'hiver"]
|
172 |
dfs = []
|
173 |
for culture in cultures:
|
@@ -180,14 +185,6 @@ if __name__ == '__main__':
|
|
180 |
scenario=scenario,
|
181 |
shading_coef=0.,
|
182 |
)
|
183 |
-
# print(monthly_forecast.head())
|
184 |
-
|
185 |
-
yield_forecast = get_annual_yield(monthly_forecast)
|
186 |
-
yield_forecast_df = yield_forecast.reset_index()
|
187 |
-
yield_forecast_df.columns = ["time", "yield_simple_forecast"]
|
188 |
-
yield_forecast_df["year"] = yield_forecast_df["time"].dt.year
|
189 |
-
|
190 |
-
print(yield_forecast_df.head())
|
191 |
|
192 |
monthly_forecast_with_shading = compute_yield_forecast(
|
193 |
latitude=47,
|
@@ -196,43 +193,22 @@ if __name__ == '__main__':
|
|
196 |
scenario=scenario,
|
197 |
shading_coef=shading_coef,
|
198 |
)
|
199 |
-
# print(monthly_forecast_with_shading.head())
|
200 |
|
201 |
-
|
202 |
-
|
203 |
-
years = 2025 + np.arange(len(yield_forecast_with_shading))
|
204 |
-
aggregated_forecasts = yield_forecast.rolling(n_years).sum()[years % n_years == 0]
|
205 |
-
aggregated_forecasts_with_shading = yield_forecast_with_shading.rolling(n_years).sum()[years % n_years == 0]
|
206 |
-
# plt.plot(yield_forecast.rolling(n_years).sum(), label="No shading")
|
207 |
-
# plt.plot(yield_forecast_with_shading.rolling(n_years).sum(), label="20% Shading")
|
208 |
-
# plt.bar(years[years % n_years == 0], aggregated_forecasts, label="No shading")
|
209 |
-
# plt.bar(years[years % n_years == 0], aggregated_forecasts_with_shading, label="20% Shading")
|
210 |
|
211 |
-
|
212 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
213 |
|
214 |
-
aggregated_years = years[years % n_years == 0]
|
215 |
-
rects = ax.bar(aggregated_years, aggregated_forecasts, width, label="No shading")
|
216 |
-
rects2 = ax.bar(aggregated_years + width, aggregated_forecasts_with_shading, width, label="20% shading")
|
217 |
|
218 |
-
|
219 |
-
|
220 |
-
plt.show()
|
221 |
-
=======
|
222 |
-
yield_forecast_with_shading = get_annual_yield(monthly_forecast_with_shading)
|
223 |
-
yield_forecast_with_shading_df = yield_forecast_with_shading.reset_index()
|
224 |
-
yield_forecast_with_shading_df.columns = ["time", "yield_with_shading_forecast"]
|
225 |
-
yield_forecast_with_shading_df["year"] = yield_forecast_with_shading_df["time"].dt.year
|
226 |
-
final_df = pd.merge(yield_forecast_df[["year", "yield_simple_forecast"]], yield_forecast_with_shading_df[["year", "yield_with_shading_forecast"]], on="year")
|
227 |
-
final_df["culture"] = culture
|
228 |
-
dfs.append(final_df)
|
229 |
-
|
230 |
-
|
231 |
-
result = pd.concat(dfs, axis=0)
|
232 |
-
result.to_csv("data/data_yield/rendement_forecast.csv", index=False)
|
233 |
-
|
234 |
-
# plt.plot(yield_forecast.rolling(5).mean(), label="No shading")
|
235 |
-
# plt.plot(yield_forecast_with_shading.rolling(5).mean(), label="20% Shading")
|
236 |
-
# plt.legend()
|
237 |
-
# plt.show()
|
238 |
-
>>>>>>> Stashed changes
|
|
|
131 |
culture: str = "Colza d'hiver",
|
132 |
region: str = "Bourgogne-Franche-Comté",
|
133 |
scenario: str = "pessimist",
|
134 |
+
shading_coef: float = 0.2,
|
135 |
) -> plt.Figure:
|
136 |
monthly_forecast = compute_yield_forecast(
|
137 |
latitude=latitude,
|
|
|
141 |
shading_coef=0.,
|
142 |
)
|
143 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
144 |
yield_forecast = get_annual_yield(monthly_forecast)
|
|
|
|
|
145 |
n_years = 10
|
146 |
+
years = 2025 + np.arange(len(yield_forecast))
|
147 |
+
aggregated_years = years[years % n_years == 0]
|
148 |
aggregated_forecasts = yield_forecast.rolling(n_years).sum()[years % n_years == 0]
|
|
|
149 |
|
150 |
width = 3 # the width of the bars
|
151 |
fig, ax = plt.subplots(layout='constrained')
|
|
|
152 |
_ = ax.bar(aggregated_years, aggregated_forecasts, width, label="No shading")
|
153 |
+
|
154 |
+
if shading_coef > 0:
|
155 |
+
monthly_forecast_with_shading = compute_yield_forecast(
|
156 |
+
latitude=latitude,
|
157 |
+
longitude=longitude,
|
158 |
+
culture=culture,
|
159 |
+
scenario=scenario,
|
160 |
+
shading_coef=shading_coef,
|
161 |
+
)
|
162 |
+
yield_forecast_with_shading = get_annual_yield(monthly_forecast_with_shading)
|
163 |
+
aggregated_forecasts_with_shading = yield_forecast_with_shading.rolling(n_years).sum()[years % n_years == 0]
|
164 |
+
_ = ax.bar(aggregated_years + width, aggregated_forecasts_with_shading, width, label="20% shading")
|
165 |
+
|
166 |
ax.legend()
|
167 |
+
ax.set_xlabel("Année")
|
168 |
+
ax.set_ylabel(f"Production agricole de {culture} estimée (quintal / ha)")
|
169 |
ax.set_ylim(150)
|
170 |
|
171 |
return fig
|
172 |
|
173 |
if __name__ == '__main__':
|
174 |
+
latitude = 47
|
175 |
+
longitude = 5
|
176 |
cultures = ["Colza d'hiver", "Blé tendre d'hiver", "Orge d'hiver"]
|
177 |
dfs = []
|
178 |
for culture in cultures:
|
|
|
185 |
scenario=scenario,
|
186 |
shading_coef=0.,
|
187 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
188 |
|
189 |
monthly_forecast_with_shading = compute_yield_forecast(
|
190 |
latitude=47,
|
|
|
193 |
scenario=scenario,
|
194 |
shading_coef=shading_coef,
|
195 |
)
|
|
|
196 |
|
197 |
+
fig = plot_yield(latitude, longitude, culture, scenario="pessimist", shading_coef=shading_coef)
|
198 |
+
plt.show()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
199 |
|
200 |
+
# yield_forecast = get_annual_yield(monthly_forecast)
|
201 |
+
# yield_forecast_df = yield_forecast.reset_index()
|
202 |
+
# yield_forecast_df.columns = ["time", "yield_simple_forecast"]
|
203 |
+
# yield_forecast_df["year"] = yield_forecast_df["time"].dt.year
|
204 |
+
# yield_forecast_with_shading = get_annual_yield(monthly_forecast_with_shading)
|
205 |
+
# yield_forecast_with_shading_df = yield_forecast_with_shading.reset_index()
|
206 |
+
# yield_forecast_with_shading_df.columns = ["time", "yield_with_shading_forecast"]
|
207 |
+
# yield_forecast_with_shading_df["year"] = yield_forecast_with_shading_df["time"].dt.year
|
208 |
+
# final_df = pd.merge(yield_forecast_df[["year", "yield_simple_forecast"]], yield_forecast_with_shading_df[["year", "yield_with_shading_forecast"]], on="year")
|
209 |
+
# final_df["culture"] = culture
|
210 |
+
# dfs.append(final_df)
|
211 |
|
|
|
|
|
|
|
212 |
|
213 |
+
# result = pd.concat(dfs, axis=0)
|
214 |
+
# result.to_csv("data/data_yield/rendement_forecast.csv", index=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|