mlabonne commited on
Commit
27cbb3d
ยท
1 Parent(s): 0ff924f

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +53 -32
app.py CHANGED
@@ -65,38 +65,59 @@ def main():
65
  st.markdown("Leaderboard made with [๐Ÿง LLM AutoEval](https://github.com/mlabonne/llm-autoeval) using [Nous](https://huggingface.co/NousResearch) benchmark suite. It's a collection of my own evaluations.")
66
 
67
  content = create_yall()
68
- if content:
69
- try:
70
- score_columns = ['Average', 'AGIEval', 'GPT4All', 'TruthfulQA', 'Bigbench']
71
-
72
- # Display dataframe
73
- df = convert_markdown_table_to_dataframe(content)
74
- for col in score_columns:
75
- df[col] = pd.to_numeric(df[col].str.strip(), errors='coerce')
76
- st.dataframe(df, use_container_width=True)
77
-
78
- # Full-width plot for the first category
79
- create_bar_chart(df, score_columns[0])
80
-
81
- # Next two plots in two columns
82
- col1, col2 = st.columns(2)
83
- with col1:
84
- create_bar_chart(df, score_columns[1])
85
- with col2:
86
- create_bar_chart(df, score_columns[2])
87
-
88
- # Last two plots in two columns
89
- col3, col4 = st.columns(2)
90
- with col3:
91
- create_bar_chart(df, score_columns[3])
92
- with col4:
93
- create_bar_chart(df, score_columns[4])
94
-
95
- except Exception as e:
96
- st.error("An error occurred while processing the markdown table.")
97
- st.error(str(e))
98
- else:
99
- st.error("Failed to download the content from the URL provided.")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
100
 
101
  if __name__ == "__main__":
102
  main()
 
65
  st.markdown("Leaderboard made with [๐Ÿง LLM AutoEval](https://github.com/mlabonne/llm-autoeval) using [Nous](https://huggingface.co/NousResearch) benchmark suite. It's a collection of my own evaluations.")
66
 
67
  content = create_yall()
68
+ tab1, tab2 = st.tabs(["๐Ÿ† Leaderboard", "๐Ÿ“ About"])
69
+
70
+ # Leaderboard tab
71
+ with tab1:
72
+ if content:
73
+ try:
74
+ score_columns = ['Average', 'AGIEval', 'GPT4All', 'TruthfulQA', 'Bigbench']
75
+
76
+ # Display dataframe
77
+ df = convert_markdown_table_to_dataframe(content)
78
+ for col in score_columns:
79
+ df[col] = pd.to_numeric(df[col].str.strip(), errors='coerce')
80
+ st.dataframe(df, use_container_width=True)
81
+
82
+ # Full-width plot for the first category
83
+ create_bar_chart(df, score_columns[0])
84
+
85
+ # Next two plots in two columns
86
+ col1, col2 = st.columns(2)
87
+ with col1:
88
+ create_bar_chart(df, score_columns[1])
89
+ with col2:
90
+ create_bar_chart(df, score_columns[2])
91
+
92
+ # Last two plots in two columns
93
+ col3, col4 = st.columns(2)
94
+ with col3:
95
+ create_bar_chart(df, score_columns[3])
96
+ with col4:
97
+ create_bar_chart(df, score_columns[4])
98
+
99
+ except Exception as e:
100
+ st.error("An error occurred while processing the markdown table.")
101
+ st.error(str(e))
102
+ else:
103
+ st.error("Failed to download the content from the URL provided.")
104
+
105
+ # About tab
106
+ with tab2:
107
+ st.markdown('''
108
+ ## Nous benchmark suite
109
+
110
+ Popularized by [Teknium](https://huggingface.co/teknium) and [NousResearch](https://huggingface.co/NousResearch), this benchmark suite aggregates four benchmarks:
111
+
112
+ * [**AGIEval**](https://arxiv.org/abs/2304.06364) (0-shot): `agieval_aqua_rat,agieval_logiqa_en,agieval_lsat_ar,agieval_lsat_lr,agieval_lsat_rc,agieval_sat_en,agieval_sat_en_without_passage,agieval_sat_math`
113
+ * **GPT4ALL** (0-shot): `hellaswag,openbookqa,winogrande,arc_easy,arc_challenge,boolq,piqa`
114
+ * [**TruthfulQA**](https://arxiv.org/abs/2109.07958) (0-shot): `truthfulqa_mc`
115
+ * [**Bigbench**](https://arxiv.org/abs/2206.04615) (0-shot): `bigbench_causal_judgement,bigbench_date_understanding,bigbench_disambiguation_qa,bigbench_geometric_shapes,bigbench_logical_deduction_five_objects,bigbench_logical_deduction_seven_objects,bigbench_logical_deduction_three_objects,bigbench_movie_recommendation,bigbench_navigate,bigbench_reasoning_about_colored_objects,bigbench_ruin_names,bigbench_salient_translation_error_detection,bigbench_snarks,bigbench_sports_understanding,bigbench_temporal_sequences,bigbench_tracking_shuffled_objects_five_objects,bigbench_tracking_shuffled_objects_seven_objects,bigbench_tracking_shuffled_objects_three_objects`
116
+
117
+ ## Reproducibility
118
+
119
+ You can easily reproduce these results using [๐Ÿง LLM AutoEval](https://github.com/mlabonne/llm-autoeval/tree/master), a colab notebook that automates the evaluation process (benchmark: `nous`). This will upload the results to GitHub as gists. You can find the entire table with the links to the detailed results [here](https://gist.github.com/mlabonne/90294929a2dbcb8877f9696f28105fdf).
120
+ ''')
121
 
122
  if __name__ == "__main__":
123
  main()