mlabonne commited on
Commit
3ece82c
·
verified ·
1 Parent(s): ff99c22

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +47 -13
app.py CHANGED
@@ -4,6 +4,8 @@ import requests
4
  import pandas as pd
5
  from io import StringIO
6
  import plotly.graph_objs as go
 
 
7
 
8
  from yall import create_yall
9
 
@@ -34,7 +36,29 @@ def convert_markdown_table_to_dataframe(md_content):
34
 
35
  return df
36
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37
 
 
38
  def create_bar_chart(df, category):
39
  """Create and display a bar chart for a given category."""
40
  st.write(f"### {category} Scores")
@@ -74,25 +98,35 @@ def main():
74
  score_columns = ['Average', 'AGIEval', 'GPT4All', 'TruthfulQA', 'Bigbench']
75
 
76
  # Display dataframe
77
- df = convert_markdown_table_to_dataframe(content)
 
78
  for col in score_columns:
79
- df[col] = pd.to_numeric(df[col].str.strip(), errors='coerce')
80
-
81
- # Toggles for Phi and Mistral in a single row
82
- col1, col2 = st.columns(2)
 
83
  with col1:
84
- show_phi = st.checkbox("Phi", value=True)
85
  with col2:
86
- show_mistral = st.checkbox("Mistral", value=True)
 
 
87
 
88
  # Apply filters based on toggles
89
- if not show_phi:
90
- df = df[~df['Model'].str.lower().str.contains('phi')]
91
- if not show_mistral:
92
- df = df[~df['Model'].str.lower().str.contains('mistral')]
 
 
 
 
 
 
 
 
93
 
94
- st.dataframe(df, use_container_width=True)
95
-
96
  # Full-width plot for the first category
97
  create_bar_chart(df, score_columns[0])
98
 
 
4
  import pandas as pd
5
  from io import StringIO
6
  import plotly.graph_objs as go
7
+ from huggingface_hub import HfApi
8
+ from huggingface_hub.utils import RepositoryNotFoundError, RevisionNotFoundError
9
 
10
  from yall import create_yall
11
 
 
36
 
37
  return df
38
 
39
+ @st.cache_data
40
+ def get_model_info(df):
41
+ api = HfApi()
42
+
43
+ # Initialize new columns for likes and tags
44
+ df['likes'] = None
45
+ df['tags'] = None
46
+
47
+ # Iterate through DataFrame rows
48
+ for index, row in df.iterrows():
49
+ model = row['Model'].strip()
50
+ try:
51
+ model_info = api.model_info(repo_id=str(model))
52
+ df.loc[index, 'Likes'] = model_info.likes
53
+ df.loc[index, 'Tags'] = ', '.join(model_info.tags)
54
+
55
+ except (RepositoryNotFoundError, RevisionNotFoundError):
56
+ df.loc[index, 'Likes'] = -1
57
+ df.loc[index, 'Tags'] = ''
58
+
59
+ return df
60
 
61
+
62
  def create_bar_chart(df, category):
63
  """Create and display a bar chart for a given category."""
64
  st.write(f"### {category} Scores")
 
98
  score_columns = ['Average', 'AGIEval', 'GPT4All', 'TruthfulQA', 'Bigbench']
99
 
100
  # Display dataframe
101
+ full_df = convert_markdown_table_to_dataframe(content)
102
+ full_df = get_model_info(full_df)
103
  for col in score_columns:
104
+ full_df[col] = full_df.to_numeric(full_df[col].str.strip(), errors='coerce')
105
+ df = pd.DataFrame(columns=full_df.columns)
106
+
107
+ # Toggles
108
+ col1, col2, col3 = st.columns(3)
109
  with col1:
110
+ show_phi = st.toggle("Phi (2.8B)")
111
  with col2:
112
+ show_mistral = st.toggle("Mistral (7B)")
113
+ with col3:
114
+ show_mistral = st.toggle("Mixtral (46.7B)")
115
 
116
  # Apply filters based on toggles
117
+ if show_phi:
118
+ df = df.append(full_df[full_df['tags'].str.lower().str.contains('phi-msft')], ignore_index=True)
119
+ if show_mistral:
120
+ df = df.append(full_df[full_df['tags'].str.lower().str.contains('mistral')], ignore_index=True)
121
+ if show_mixtral:
122
+ df = df.append(full_df[full_df['tags'].str.lower().str.contains('mixtral')], ignore_index=True)
123
+
124
+ # Sort values
125
+ df = df.sort_values(by='Average', ascending=False)
126
+
127
+ # Display the DataFrame
128
+ st.dataframe(df[['Model'] + score_columns + ['Likes']], use_container_width=True)
129
 
 
 
130
  # Full-width plot for the first category
131
  create_bar_chart(df, score_columns[0])
132