Spaces:
Runtime error
Runtime error
File size: 1,577 Bytes
f1ff7a7 dc27180 f1ff7a7 4098b12 dc27180 4098b12 dc27180 f1ff7a7 dc27180 f1ff7a7 dc27180 f086418 dc27180 4098b12 f086418 4098b12 dc27180 f086418 dc27180 4098b12 dc27180 f1ff7a7 4098b12 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 |
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
# Load model with CPU optimizations
model = AutoModelForCausalLM.from_pretrained(
"hackergeek/gemma-finetuned",
torch_dtype=torch.float32,
device_map="cpu",
low_cpu_mem_usage=True # Now works with Accelerate installed
)
tokenizer = AutoTokenizer.from_pretrained("hackergeek/gemma-finetuned")
tokenizer.pad_token = tokenizer.eos_token
def format_prompt(message, history):
"""Format the prompt with conversation history"""
system_prompt = "You are a knowledgeable space expert assistant. Answer questions about astronomy, space exploration, and related topics in a clear and engaging manner."
prompt = f"<system>{system_prompt}</system>\n"
for user_msg, bot_msg in history:
prompt += f"<user>{user_msg}</user>\n<assistant>{bot_msg}</assistant>\n"
prompt += f"<user>{message}</user>\n<assistant>"
return prompt
def respond(message, history):
full_prompt = format_prompt(message, history)
inputs = tokenizer(full_prompt, return_tensors="pt", add_special_tokens=False)
outputs = model.generate(
inputs.input_ids,
attention_mask=inputs.attention_mask,
max_new_tokens=256, # Reduced for CPU safety
temperature=0.7,
top_p=0.85,
repetition_penalty=1.1,
do_sample=True
)
response = tokenizer.decode(outputs[0][inputs.input_ids.shape[1]:], skip_special_tokens=True)
return response
# ... (rest of the Gradio interface code remains the same) |