Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -2,28 +2,41 @@ import gradio as gr
|
|
2 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
|
4 |
# Load your fine-tuned GPT-2 model from Hugging Face
|
5 |
-
MODEL_NAME = "hackergeek98/
|
6 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
7 |
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME)
|
8 |
|
|
|
|
|
|
|
9 |
# Function to generate responses
|
10 |
def generate_response(user_input):
|
11 |
-
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
-
# Generate a response
|
15 |
-
outputs = model.generate(inputs['input_ids'], max_length=
|
16 |
|
17 |
-
# Decode the output
|
18 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
|
|
|
|
|
|
|
|
|
|
19 |
return response
|
20 |
|
21 |
# Create Gradio interface
|
22 |
interface = gr.Interface(fn=generate_response,
|
23 |
-
inputs=gr.Textbox(label="Enter your message"),
|
24 |
-
outputs=gr.Textbox(label="Therapist Response"),
|
25 |
title="Virtual Therapist",
|
26 |
-
description="A fine-tuned GPT-2 model acting as a virtual therapist.")
|
27 |
|
28 |
# Launch the app
|
29 |
interface.launch()
|
|
|
2 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
|
4 |
# Load your fine-tuned GPT-2 model from Hugging Face
|
5 |
+
MODEL_NAME = "hackergeek98/therapist" # Replace with your model
|
6 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
7 |
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME)
|
8 |
|
9 |
+
# Initialize conversation history
|
10 |
+
conversation_history = ""
|
11 |
+
|
12 |
# Function to generate responses
|
13 |
def generate_response(user_input):
|
14 |
+
global conversation_history
|
15 |
+
|
16 |
+
# Update conversation history with user input
|
17 |
+
conversation_history += f"User: {user_input}\n"
|
18 |
+
|
19 |
+
# Tokenize the conversation history
|
20 |
+
inputs = tokenizer(conversation_history, return_tensors="pt", truncation=True, max_length=1024)
|
21 |
|
22 |
+
# Generate a response from the model
|
23 |
+
outputs = model.generate(inputs['input_ids'], max_length=1024, num_return_sequences=1, no_repeat_ngram_size=2)
|
24 |
|
25 |
+
# Decode the model's output
|
26 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
27 |
+
|
28 |
+
# Update conversation history with the model's response
|
29 |
+
conversation_history += f"Therapist: {response}\n"
|
30 |
+
|
31 |
+
# Return the therapist's response
|
32 |
return response
|
33 |
|
34 |
# Create Gradio interface
|
35 |
interface = gr.Interface(fn=generate_response,
|
36 |
+
inputs=gr.Textbox(label="Enter your message", lines=2),
|
37 |
+
outputs=gr.Textbox(label="Therapist Response", lines=2),
|
38 |
title="Virtual Therapist",
|
39 |
+
description="A fine-tuned GPT-2 model acting as a virtual therapist. Chat with the model and receive responses as if you are talking to a therapist.")
|
40 |
|
41 |
# Launch the app
|
42 |
interface.launch()
|