Spaces:
Sleeping
Sleeping
File size: 1,634 Bytes
12001da c24b2e2 12001da f2135fb 12001da |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 |
import gradio as gr
from huggingface_hub import InferenceClient
import os
from huggingface_hub import login
# Fetch token from environment (automatically loaded from secrets)
hf_token = os.getenv("gemma")
login(hf_token)
# Initialize the client with your model
client = InferenceClient("hackergeek/gemma-finetuned")
def respond(
message: str,
history: list[tuple[str, str]],
system_message: str,
max_tokens: int,
temperature: float,
top_p: float,
):
# Build a prompt from the system message and conversation history
prompt = f"{system_message}\n"
for user_msg, assistant_msg in history:
if user_msg:
prompt += f"User: {user_msg}\n"
if assistant_msg:
prompt += f"Assistant: {assistant_msg}\n"
prompt += f"User: {message}\nAssistant: "
# Call the text generation API with updated parameter name
response = client.text_generation(
model="hackergeek/gemma-finetuned",
prompt=prompt,
max_new_tokens=max_tokens,
temperature=temperature,
top_p=top_p,
)
return response["generated_text"]
# Set up the Gradio Chat Interface
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
],
)
if __name__ == "__main__":
demo.launch()
|