import gradio as gr from huggingface_hub import InferenceClient import os from huggingface_hub import login # Fetch token from environment (automatically loaded from secrets) hf_token = os.getenv("gemma") login(hf_token) # Initialize the client with your model client = InferenceClient("hackergeek/gemma-finetuned") def respond( message: str, history: list[tuple[str, str]], system_message: str, max_tokens: int, temperature: float, top_p: float, ): # Build a prompt from the system message and conversation history prompt = f"{system_message}\n" for user_msg, assistant_msg in history: if user_msg: prompt += f"User: {user_msg}\n" if assistant_msg: prompt += f"Assistant: {assistant_msg}\n" prompt += f"User: {message}\nAssistant: " # Call the text generation API with updated parameter name response = client.text_generation( model="hackergeek/gemma-finetuned", prompt=prompt, max_new_tokens=max_tokens, temperature=temperature, top_p=top_p, ) return response["generated_text"] # Set up the Gradio Chat Interface demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"), ], ) if __name__ == "__main__": demo.launch()