hackergeek98 commited on
Commit
44e068b
·
verified ·
1 Parent(s): 208f408

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +12 -23
app.py CHANGED
@@ -1,7 +1,5 @@
1
  import torch
2
  import gradio as gr
3
- import os
4
- import logging
5
  from transformers import (
6
  AutoModelForCausalLM,
7
  AutoTokenizer,
@@ -10,12 +8,11 @@ from transformers import (
10
  DataCollatorForLanguageModeling
11
  )
12
  from datasets import load_dataset
 
 
13
 
14
- # Force CPU-only mode
15
- os.environ["CUDA_VISIBLE_DEVICES"] = ""
16
- os.environ["BITSANDBYTES_NOWELCOME"] = "1"
17
-
18
- # Configure logging
19
  logging.basicConfig(level=logging.INFO)
20
 
21
  def train():
@@ -26,17 +23,13 @@ def train():
26
  model = AutoModelForCausalLM.from_pretrained(
27
  model_name,
28
  device_map="cpu",
29
- trust_remote_code=True,
30
- load_in_4bit=False # Disable quantization
31
  )
32
 
33
- # Add padding token
34
- tokenizer.pad_token = tokenizer.eos_token
35
-
36
- # Load sample dataset
37
  dataset = load_dataset("wikitext", "wikitext-2-raw-v1")
38
 
39
- # Tokenization function
40
  def tokenize_function(examples):
41
  return tokenizer(
42
  examples["text"],
@@ -52,25 +45,21 @@ def train():
52
  remove_columns=["text"]
53
  )
54
 
55
- # Data collator
56
  data_collator = DataCollatorForLanguageModeling(
57
  tokenizer=tokenizer,
58
  mlm=False
59
  )
60
 
61
- # Training arguments
62
  training_args = TrainingArguments(
63
  output_dir="./results",
64
  per_device_train_batch_size=2,
65
- per_device_eval_batch_size=2,
66
- num_train_epochs=1, # Reduced for testing
67
  logging_dir="./logs",
68
  fp16=False,
69
- bf16=False,
70
- use_cpu=True # Explicit CPU usage
71
  )
72
 
73
- # Trainer
74
  trainer = Trainer(
75
  model=model,
76
  args=training_args,
@@ -79,11 +68,11 @@ def train():
79
  )
80
 
81
  # Start training
82
- logging.info("Starting training...")
83
  trainer.train()
84
  logging.info("Training completed!")
85
 
86
- return "✅ Training successful! Model saved."
87
 
88
  except Exception as e:
89
  logging.error(f"Error: {str(e)}")
 
1
  import torch
2
  import gradio as gr
 
 
3
  from transformers import (
4
  AutoModelForCausalLM,
5
  AutoTokenizer,
 
8
  DataCollatorForLanguageModeling
9
  )
10
  from datasets import load_dataset
11
+ import logging
12
+ import os
13
 
14
+ # Configure environment
15
+ os.environ["CUDA_VISIBLE_DEVICES"] = "" # Force CPU
 
 
 
16
  logging.basicConfig(level=logging.INFO)
17
 
18
  def train():
 
23
  model = AutoModelForCausalLM.from_pretrained(
24
  model_name,
25
  device_map="cpu",
26
+ trust_remote_code=True
 
27
  )
28
 
29
+ # Load dataset
 
 
 
30
  dataset = load_dataset("wikitext", "wikitext-2-raw-v1")
31
 
32
+ # Tokenization
33
  def tokenize_function(examples):
34
  return tokenizer(
35
  examples["text"],
 
45
  remove_columns=["text"]
46
  )
47
 
48
+ # Training setup
49
  data_collator = DataCollatorForLanguageModeling(
50
  tokenizer=tokenizer,
51
  mlm=False
52
  )
53
 
 
54
  training_args = TrainingArguments(
55
  output_dir="./results",
56
  per_device_train_batch_size=2,
57
+ num_train_epochs=1,
 
58
  logging_dir="./logs",
59
  fp16=False,
60
+ report_to="none"
 
61
  )
62
 
 
63
  trainer = Trainer(
64
  model=model,
65
  args=training_args,
 
68
  )
69
 
70
  # Start training
71
+ logging.info("Training started...")
72
  trainer.train()
73
  logging.info("Training completed!")
74
 
75
+ return "✅ Training successful"
76
 
77
  except Exception as e:
78
  logging.error(f"Error: {str(e)}")