Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,7 +1,5 @@
|
|
1 |
import torch
|
2 |
import gradio as gr
|
3 |
-
import os
|
4 |
-
import logging
|
5 |
from transformers import (
|
6 |
AutoModelForCausalLM,
|
7 |
AutoTokenizer,
|
@@ -10,12 +8,11 @@ from transformers import (
|
|
10 |
DataCollatorForLanguageModeling
|
11 |
)
|
12 |
from datasets import load_dataset
|
|
|
|
|
13 |
|
14 |
-
#
|
15 |
-
os.environ["CUDA_VISIBLE_DEVICES"] = ""
|
16 |
-
os.environ["BITSANDBYTES_NOWELCOME"] = "1"
|
17 |
-
|
18 |
-
# Configure logging
|
19 |
logging.basicConfig(level=logging.INFO)
|
20 |
|
21 |
def train():
|
@@ -26,17 +23,13 @@ def train():
|
|
26 |
model = AutoModelForCausalLM.from_pretrained(
|
27 |
model_name,
|
28 |
device_map="cpu",
|
29 |
-
trust_remote_code=True
|
30 |
-
load_in_4bit=False # Disable quantization
|
31 |
)
|
32 |
|
33 |
-
#
|
34 |
-
tokenizer.pad_token = tokenizer.eos_token
|
35 |
-
|
36 |
-
# Load sample dataset
|
37 |
dataset = load_dataset("wikitext", "wikitext-2-raw-v1")
|
38 |
|
39 |
-
# Tokenization
|
40 |
def tokenize_function(examples):
|
41 |
return tokenizer(
|
42 |
examples["text"],
|
@@ -52,25 +45,21 @@ def train():
|
|
52 |
remove_columns=["text"]
|
53 |
)
|
54 |
|
55 |
-
#
|
56 |
data_collator = DataCollatorForLanguageModeling(
|
57 |
tokenizer=tokenizer,
|
58 |
mlm=False
|
59 |
)
|
60 |
|
61 |
-
# Training arguments
|
62 |
training_args = TrainingArguments(
|
63 |
output_dir="./results",
|
64 |
per_device_train_batch_size=2,
|
65 |
-
|
66 |
-
num_train_epochs=1, # Reduced for testing
|
67 |
logging_dir="./logs",
|
68 |
fp16=False,
|
69 |
-
|
70 |
-
use_cpu=True # Explicit CPU usage
|
71 |
)
|
72 |
|
73 |
-
# Trainer
|
74 |
trainer = Trainer(
|
75 |
model=model,
|
76 |
args=training_args,
|
@@ -79,11 +68,11 @@ def train():
|
|
79 |
)
|
80 |
|
81 |
# Start training
|
82 |
-
logging.info("
|
83 |
trainer.train()
|
84 |
logging.info("Training completed!")
|
85 |
|
86 |
-
return "✅ Training successful
|
87 |
|
88 |
except Exception as e:
|
89 |
logging.error(f"Error: {str(e)}")
|
|
|
1 |
import torch
|
2 |
import gradio as gr
|
|
|
|
|
3 |
from transformers import (
|
4 |
AutoModelForCausalLM,
|
5 |
AutoTokenizer,
|
|
|
8 |
DataCollatorForLanguageModeling
|
9 |
)
|
10 |
from datasets import load_dataset
|
11 |
+
import logging
|
12 |
+
import os
|
13 |
|
14 |
+
# Configure environment
|
15 |
+
os.environ["CUDA_VISIBLE_DEVICES"] = "" # Force CPU
|
|
|
|
|
|
|
16 |
logging.basicConfig(level=logging.INFO)
|
17 |
|
18 |
def train():
|
|
|
23 |
model = AutoModelForCausalLM.from_pretrained(
|
24 |
model_name,
|
25 |
device_map="cpu",
|
26 |
+
trust_remote_code=True
|
|
|
27 |
)
|
28 |
|
29 |
+
# Load dataset
|
|
|
|
|
|
|
30 |
dataset = load_dataset("wikitext", "wikitext-2-raw-v1")
|
31 |
|
32 |
+
# Tokenization
|
33 |
def tokenize_function(examples):
|
34 |
return tokenizer(
|
35 |
examples["text"],
|
|
|
45 |
remove_columns=["text"]
|
46 |
)
|
47 |
|
48 |
+
# Training setup
|
49 |
data_collator = DataCollatorForLanguageModeling(
|
50 |
tokenizer=tokenizer,
|
51 |
mlm=False
|
52 |
)
|
53 |
|
|
|
54 |
training_args = TrainingArguments(
|
55 |
output_dir="./results",
|
56 |
per_device_train_batch_size=2,
|
57 |
+
num_train_epochs=1,
|
|
|
58 |
logging_dir="./logs",
|
59 |
fp16=False,
|
60 |
+
report_to="none"
|
|
|
61 |
)
|
62 |
|
|
|
63 |
trainer = Trainer(
|
64 |
model=model,
|
65 |
args=training_args,
|
|
|
68 |
)
|
69 |
|
70 |
# Start training
|
71 |
+
logging.info("Training started...")
|
72 |
trainer.train()
|
73 |
logging.info("Training completed!")
|
74 |
|
75 |
+
return "✅ Training successful"
|
76 |
|
77 |
except Exception as e:
|
78 |
logging.error(f"Error: {str(e)}")
|