Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,7 @@
|
|
1 |
import torch
|
2 |
import gradio as gr
|
3 |
import os
|
|
|
4 |
from transformers import (
|
5 |
AutoModelForCausalLM,
|
6 |
AutoTokenizer,
|
@@ -8,26 +9,96 @@ from transformers import (
|
|
8 |
Trainer,
|
9 |
DataCollatorForLanguageModeling
|
10 |
)
|
|
|
11 |
|
12 |
-
# Force CPU mode
|
13 |
os.environ["CUDA_VISIBLE_DEVICES"] = ""
|
14 |
os.environ["BITSANDBYTES_NOWELCOME"] = "1"
|
15 |
|
|
|
|
|
|
|
16 |
def train():
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
trust_remote_code=True
|
21 |
-
|
22 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
num_train_epochs=3,
|
28 |
-
use_cpu=True, # Explicit CPU usage
|
29 |
-
fp16=False,
|
30 |
-
bf16=False,
|
31 |
)
|
32 |
-
|
33 |
-
|
|
|
|
1 |
import torch
|
2 |
import gradio as gr
|
3 |
import os
|
4 |
+
import logging
|
5 |
from transformers import (
|
6 |
AutoModelForCausalLM,
|
7 |
AutoTokenizer,
|
|
|
9 |
Trainer,
|
10 |
DataCollatorForLanguageModeling
|
11 |
)
|
12 |
+
from datasets import load_dataset
|
13 |
|
14 |
+
# Force CPU-only mode
|
15 |
os.environ["CUDA_VISIBLE_DEVICES"] = ""
|
16 |
os.environ["BITSANDBYTES_NOWELCOME"] = "1"
|
17 |
|
18 |
+
# Configure logging
|
19 |
+
logging.basicConfig(level=logging.INFO)
|
20 |
+
|
21 |
def train():
|
22 |
+
try:
|
23 |
+
# Load model and tokenizer
|
24 |
+
model_name = "microsoft/phi-2"
|
25 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
26 |
+
model = AutoModelForCausalLM.from_pretrained(
|
27 |
+
model_name,
|
28 |
+
device_map="cpu",
|
29 |
+
trust_remote_code=True,
|
30 |
+
load_in_4bit=False # Disable quantization
|
31 |
+
)
|
32 |
+
|
33 |
+
# Add padding token
|
34 |
+
tokenizer.pad_token = tokenizer.eos_token
|
35 |
+
|
36 |
+
# Load sample dataset
|
37 |
+
dataset = load_dataset("wikitext", "wikitext-2-raw-v1")
|
38 |
+
|
39 |
+
# Tokenization function
|
40 |
+
def tokenize_function(examples):
|
41 |
+
return tokenizer(
|
42 |
+
examples["text"],
|
43 |
+
padding="max_length",
|
44 |
+
truncation=True,
|
45 |
+
max_length=256,
|
46 |
+
return_tensors="pt",
|
47 |
+
)
|
48 |
+
|
49 |
+
tokenized_dataset = dataset.map(
|
50 |
+
tokenize_function,
|
51 |
+
batched=True,
|
52 |
+
remove_columns=["text"]
|
53 |
+
)
|
54 |
+
|
55 |
+
# Data collator
|
56 |
+
data_collator = DataCollatorForLanguageModeling(
|
57 |
+
tokenizer=tokenizer,
|
58 |
+
mlm=False
|
59 |
+
)
|
60 |
+
|
61 |
+
# Training arguments
|
62 |
+
training_args = TrainingArguments(
|
63 |
+
output_dir="./results",
|
64 |
+
per_device_train_batch_size=2,
|
65 |
+
per_device_eval_batch_size=2,
|
66 |
+
num_train_epochs=1, # Reduced for testing
|
67 |
+
logging_dir="./logs",
|
68 |
+
fp16=False,
|
69 |
+
bf16=False,
|
70 |
+
use_cpu=True # Explicit CPU usage
|
71 |
+
)
|
72 |
+
|
73 |
+
# Trainer
|
74 |
+
trainer = Trainer(
|
75 |
+
model=model,
|
76 |
+
args=training_args,
|
77 |
+
train_dataset=tokenized_dataset["train"],
|
78 |
+
data_collator=data_collator,
|
79 |
+
)
|
80 |
+
|
81 |
+
# Start training
|
82 |
+
logging.info("Starting training...")
|
83 |
+
trainer.train()
|
84 |
+
logging.info("Training completed!")
|
85 |
+
|
86 |
+
return "✅ Training successful! Model saved."
|
87 |
+
|
88 |
+
except Exception as e:
|
89 |
+
logging.error(f"Error: {str(e)}")
|
90 |
+
return f"❌ Training failed: {str(e)}"
|
91 |
+
|
92 |
+
# Gradio interface
|
93 |
+
with gr.Blocks() as demo:
|
94 |
+
gr.Markdown("# Phi-2 CPU Training")
|
95 |
+
start_btn = gr.Button("Start Training")
|
96 |
+
output = gr.Textbox()
|
97 |
|
98 |
+
start_btn.click(
|
99 |
+
fn=train,
|
100 |
+
outputs=output
|
|
|
|
|
|
|
|
|
101 |
)
|
102 |
+
|
103 |
+
if __name__ == "__main__":
|
104 |
+
demo.launch(server_name="0.0.0.0", server_port=7860)
|