File size: 1,494 Bytes
88a74a0
ffa7858
 
 
 
88a74a0
8d349df
88a74a0
 
 
ffa7858
 
 
 
 
 
88a74a0
 
 
ffa7858
 
 
 
 
88a74a0
 
 
 
 
ffa7858
88a74a0
 
 
 
 
 
ffa7858
88a74a0
 
 
 
 
 
 
ffa7858
88a74a0
 
 
ffa7858
88a74a0
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
import gradio as gr
from huggingface_hub import InferenceClient, login
from typing import List, Tuple



client = InferenceClient("hackergeek98/gemma-finetuned")


def respond(
    message: str,
    history: List[Tuple[str, str]],
    system_message: str,
    max_tokens: int,
    temperature: float,
    top_p: float,
):
    messages = [{"role": "system", "content": system_message}]

    for user_msg, assistant_msg in history:
        if user_msg:
            messages.append({"role": "user", "content": user_msg})
        if assistant_msg:
            messages.append({"role": "assistant", "content": assistant_msg})

    messages.append({"role": "user", "content": message})

    response = ""

    for msg in client.chat_completion(
        messages,
        max_tokens=max_tokens,
        stream=True,
        temperature=temperature,
        top_p=top_p,
    ):
        token = msg.choices[0].delta.content if msg.choices[0].delta else ""
        response += token
        yield response


demo = gr.ChatInterface(
    respond,
    additional_inputs=[
        gr.Textbox(value="You are a friendly chatbot.", label="System message"),
        gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
        gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
        gr.Slider(
            minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"
        ),
    ],
)

if __name__ == "__main__":
    demo.launch()