Spaces:
Sleeping
Sleeping
File size: 1,880 Bytes
f960061 e5a2042 142217d 34ef334 e5a2042 34ef334 e5a2042 34ef334 e5a2042 34ef334 e5a2042 f960061 e5a2042 f960061 e5a2042 f960061 e5a2042 f960061 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 |
import gradio as gr
from huggingface_hub import InferenceClient
import os
from huggingface_hub import login
# Fetch token from environment (automatically loaded from secrets)
hf_token = os.getenv("gemma3")
login(hf_token)
# Initialize the client with your model
client = InferenceClient("hackergeek98/gemma-finetuned")
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
):
# Preparing the messages list
messages = [{"role": "system", "content": system_message}]
# Adding conversation history
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
# Adding the new user message
messages.append({"role": "user", "content": message})
# Prepare the prompt for generation
prompt = " ".join([msg["content"] for msg in messages])
# Call the Inference API for text generation (or chat completion if supported)
response = client.completion(
model="hackergeek98/gemma-finetuned", # Specify the model
prompt=prompt,
max_tokens=max_tokens,
temperature=temperature,
top_p=top_p,
)
# The response will contain the generated text
return response["choices"][0]["text"]
# Gradio interface setup
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
],
)
# Run the app
if __name__ == "__main__":
demo.launch()
|