File size: 703 Bytes
d3cbad9
b6c5a4f
d3cbad9
b6c5a4f
d3cbad9
 
 
 
b6c5a4f
d3cbad9
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
import torch
from peft import PeftModel
from transformers import AutoModelForCausalLM, AutoTokenizer

# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained("google/gemma-3-1b-pt")

# Load base model on CPU
base_model = AutoModelForCausalLM.from_pretrained("google/gemma-3-1b-pt")

# Load fine-tuned PEFT model
model = PeftModel.from_pretrained(base_model, "hackergeek98/gemma-finetuned")

# Ensure model runs on CPU
model = model.to("cpu")

# Test inference
input_text = "Hello, how are you?"
input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to("cpu")

# Generate output
output = model.generate(input_ids, max_length=50)
print(tokenizer.decode(output[0], skip_special_tokens=True))