hackergeek98 commited on
Commit
b0f97a1
·
verified ·
1 Parent(s): 34ef334

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +13 -18
app.py CHANGED
@@ -6,7 +6,7 @@ from huggingface_hub import login
6
  # Fetch token from environment (automatically loaded from secrets)
7
  hf_token = os.getenv("gemma3")
8
  login(hf_token)
9
- # Initialize the client with your model
10
  client = InferenceClient("hackergeek98/gemma-finetuned")
11
 
12
  def respond(
@@ -17,33 +17,27 @@ def respond(
17
  temperature,
18
  top_p,
19
  ):
20
- # Preparing the messages list
21
- messages = [{"role": "system", "content": system_message}]
22
-
23
- # Adding conversation history
24
  for val in history:
25
  if val[0]:
26
- messages.append({"role": "user", "content": val[0]})
27
  if val[1]:
28
- messages.append({"role": "assistant", "content": val[1]})
29
 
30
- # Adding the new user message
31
- messages.append({"role": "user", "content": message})
32
 
33
- # Prepare the prompt for generation
34
- prompt = " ".join([msg["content"] for msg in messages])
35
-
36
- # Call the Inference API for text generation (or chat completion if supported)
37
- response = client.completion(
38
- model="hackergeek98/gemma-finetuned", # Specify the model
39
- prompt=prompt,
40
  max_tokens=max_tokens,
41
  temperature=temperature,
42
  top_p=top_p,
43
  )
44
 
45
- # The response will contain the generated text
46
- return response["choices"][0]["text"]
47
 
48
  # Gradio interface setup
49
  demo = gr.ChatInterface(
@@ -59,3 +53,4 @@ demo = gr.ChatInterface(
59
  # Run the app
60
  if __name__ == "__main__":
61
  demo.launch()
 
 
6
  # Fetch token from environment (automatically loaded from secrets)
7
  hf_token = os.getenv("gemma3")
8
  login(hf_token)
9
+
10
  client = InferenceClient("hackergeek98/gemma-finetuned")
11
 
12
  def respond(
 
17
  temperature,
18
  top_p,
19
  ):
20
+ prompt = f"{system_message}\n"
21
+
22
+ # Add conversation history if needed
 
23
  for val in history:
24
  if val[0]:
25
+ prompt += f"User: {val[0]}\n"
26
  if val[1]:
27
+ prompt += f"Assistant: {val[1]}\n"
28
 
29
+ prompt += f"User: {message}\nAssistant:"
 
30
 
31
+ # Request generation from Hugging Face Inference API
32
+ response = client.text_generation(
33
+ model="hackergeek98/gemma-finetuned",
34
+ inputs=prompt,
 
 
 
35
  max_tokens=max_tokens,
36
  temperature=temperature,
37
  top_p=top_p,
38
  )
39
 
40
+ return response['generated_text']
 
41
 
42
  # Gradio interface setup
43
  demo = gr.ChatInterface(
 
53
  # Run the app
54
  if __name__ == "__main__":
55
  demo.launch()
56
+