import torch from peft import PeftModel from transformers import AutoModelForCausalLM, AutoTokenizer # Load tokenizer tokenizer = AutoTokenizer.from_pretrained("google/gemma-3-1b-pt") # Load base model on CPU base_model = AutoModelForCausalLM.from_pretrained("google/gemma-3-1b-pt") # Load fine-tuned PEFT model model = PeftModel.from_pretrained(base_model, "hackergeek98/gemma-finetuned") # Ensure model runs on CPU model = model.to("cpu") # Test inference input_text = "Hello, how are you?" input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to("cpu") # Generate output output = model.generate(input_ids, max_length=50) print(tokenizer.decode(output[0], skip_special_tokens=True))