Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import WhisperProcessor, WhisperForConditionalGeneration | |
import torch | |
# Load the fine-tuned Whisper model and processor | |
model_name = "hackergeek98/tinyyyy_whisper" | |
processor = WhisperProcessor.from_pretrained(model_name) | |
model = WhisperForConditionalGeneration.from_pretrained(model_name) | |
# Move model to GPU if available | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
model.to(device) | |
# Define the ASR function | |
def transcribe_audio(audio): | |
# Load audio file | |
sampling_rate, audio_data = audio | |
# Preprocess the audio | |
inputs = processor(audio_data, sampling_rate=sampling_rate, return_tensors="pt").input_features.to(device) | |
# Generate transcription | |
with torch.no_grad(): | |
predicted_ids = model.generate(inputs) | |
# Decode the transcription | |
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)[0] | |
return transcription | |
# Create the Gradio interface | |
interface = gr.Interface( | |
fn=transcribe_audio, # Function to call | |
inputs=gr.Audio(source="upload", type="numpy"), # Input: Upload audio file | |
outputs=gr.Textbox(label="Transcription"), # Output: Display transcription | |
title="Whisper ASR: Tinyyyy Model", | |
description="Upload an audio file, and the fine-tuned Whisper model will transcribe it.", | |
examples=["example1.wav", "example2.wav"], # Example audio files | |
) | |
# Launch the app | |
interface.launch() |