Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,44 +1,68 @@
|
|
1 |
-
|
2 |
-
from transformers import WhisperProcessor, WhisperForConditionalGeneration
|
3 |
import torch
|
4 |
-
import
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
processor = WhisperProcessor.from_pretrained(model_name)
|
9 |
-
model = WhisperForConditionalGeneration.from_pretrained(model_name)
|
10 |
-
|
11 |
-
# Force the model to transcribe in Persian
|
12 |
-
model.config.forced_decoder_ids = processor.get_decoder_prompt_ids(language="fa", task="transcribe")
|
13 |
|
14 |
-
#
|
|
|
15 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
16 |
-
model.to(device)
|
17 |
|
18 |
-
|
19 |
-
|
20 |
-
# Load audio file using librosa (supports multiple formats)
|
21 |
-
audio_data, sampling_rate = librosa.load(audio_file, sr=16000) # Resample to 16kHz
|
22 |
|
23 |
-
|
24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
-
|
27 |
-
|
28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
-
|
31 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
return transcription
|
33 |
|
34 |
-
#
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
|
|
|
|
|
|
41 |
)
|
42 |
|
43 |
-
|
44 |
-
|
|
|
1 |
+
# Install required packages
|
|
|
2 |
import torch
|
3 |
+
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
|
4 |
+
from pydub import AudioSegment
|
5 |
+
import os
|
6 |
+
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
+
# Load the model and processor
|
9 |
+
model_id = "hackergeek98/tinyyyy_whisper"
|
10 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
11 |
|
12 |
+
model = AutoModelForSpeechSeq2Seq.from_pretrained(model_id).to(device)
|
13 |
+
processor = AutoProcessor.from_pretrained(model_id)
|
|
|
|
|
14 |
|
15 |
+
# Create pipeline
|
16 |
+
whisper_pipe = pipeline(
|
17 |
+
"automatic-speech-recognition", model=model, tokenizer=processor.tokenizer, feature_extractor=processor.feature_extractor, device=0 if torch.cuda.is_available() else -1
|
18 |
+
)
|
19 |
+
|
20 |
+
# Convert audio to WAV format
|
21 |
+
def convert_to_wav(audio_path):
|
22 |
+
audio = AudioSegment.from_file(audio_path)
|
23 |
+
wav_path = "converted_audio.wav"
|
24 |
+
audio.export(wav_path, format="wav")
|
25 |
+
return wav_path
|
26 |
|
27 |
+
# Split long audio into chunks
|
28 |
+
def split_audio(audio_path, chunk_length_ms=30000): # Default: 30 sec per chunk
|
29 |
+
audio = AudioSegment.from_wav(audio_path)
|
30 |
+
chunks = [audio[i:i+chunk_length_ms] for i in range(0, len(audio), chunk_length_ms)]
|
31 |
+
chunk_paths = []
|
32 |
+
|
33 |
+
for i, chunk in enumerate(chunks):
|
34 |
+
chunk_path = f"chunk_{i}.wav"
|
35 |
+
chunk.export(chunk_path, format="wav")
|
36 |
+
chunk_paths.append(chunk_path)
|
37 |
+
|
38 |
+
return chunk_paths
|
39 |
|
40 |
+
# Transcribe a long audio file
|
41 |
+
def transcribe_long_audio(audio_path):
|
42 |
+
wav_path = convert_to_wav(audio_path)
|
43 |
+
chunk_paths = split_audio(wav_path)
|
44 |
+
transcription = ""
|
45 |
+
|
46 |
+
for chunk in chunk_paths:
|
47 |
+
result = whisper_pipe(chunk)
|
48 |
+
transcription += result["text"] + "\n"
|
49 |
+
os.remove(chunk) # Remove processed chunk
|
50 |
+
|
51 |
+
os.remove(wav_path) # Cleanup original file
|
52 |
+
|
53 |
return transcription
|
54 |
|
55 |
+
# Gradio interface
|
56 |
+
def transcribe_interface(audio_file):
|
57 |
+
return transcribe_long_audio(audio_file)
|
58 |
+
|
59 |
+
iface = gr.Interface(
|
60 |
+
fn=transcribe_interface,
|
61 |
+
inputs=gr.Audio(source="upload", type="filepath"),
|
62 |
+
outputs="text",
|
63 |
+
title="Whisper ASR - Transcription",
|
64 |
+
description="Upload an audio file, and the model will transcribe it."
|
65 |
)
|
66 |
|
67 |
+
if __name__ == "__main__":
|
68 |
+
iface.launch()
|