Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from PIL import Image
|
3 |
+
import torch
|
4 |
+
import torchvision.transforms as transforms
|
5 |
+
from models.network_swinir import SwinIR as net
|
6 |
+
|
7 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
8 |
+
|
9 |
+
# Load pretrained model
|
10 |
+
model = net(img_size=64, in_nc=3, out_nc=3, nf=64, n_resblocks=8).to(device)
|
11 |
+
model.load_state_dict(torch.load('001_classicalSR_DF2K_s64w8_SwinIR-M_x8.pth', map_location=device))
|
12 |
+
model.eval()
|
13 |
+
|
14 |
+
def process_img(input_image: Image.Image):
|
15 |
+
# Resize to low resolution
|
16 |
+
input_image = input_image.resize((input_image.width // 4, input_image.height // 4))
|
17 |
+
|
18 |
+
# Transform to tensor
|
19 |
+
transform = transforms.ToTensor()
|
20 |
+
input_tensor = transform(input_image).unsqueeze(0).to(device)
|
21 |
+
|
22 |
+
# Use the model to upscale image
|
23 |
+
with torch.no_grad():
|
24 |
+
output_tensor = model(input_tensor)
|
25 |
+
|
26 |
+
# Transform the output tensor to image
|
27 |
+
output_image = transforms.ToPILImage()(output_tensor.squeeze().cpu())
|
28 |
+
|
29 |
+
return output_image
|
30 |
+
|
31 |
+
iface = gr.Interface(fn=process_img, inputs=gr.inputs.Image(type="pil"), outputs="image")
|
32 |
+
iface.launch()
|