hadxu commited on
Commit
0c9a0aa
·
1 Parent(s): 9e6b88a

Add application file

Browse files
Files changed (1) hide show
  1. app.py +71 -0
app.py ADDED
@@ -0,0 +1,71 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from openai import OpenAI
3
+ from qdrant_client import QdrantClient
4
+
5
+ import os
6
+
7
+ qclient = QdrantClient(
8
+ url="https://68106439-3d00-42df-880f-a5519695f677.us-east4-0.gcp.cloud.qdrant.io:6333",
9
+ api_key=os.getenv("QDRANT_API_KEY"),
10
+ )
11
+
12
+ client = OpenAI(
13
+ base_url="https://openrouter.ai/api/v1",
14
+ api_key=os.getenv("OPENROUTER_API_KEY"),
15
+ )
16
+
17
+ def chat(prompt: str) -> str:
18
+ message = client.chat.completions.create(
19
+ model="anthropic/claude-3-haiku",
20
+ messages=[
21
+ {"role": "user", "content": prompt}
22
+ ],
23
+ ).choices[0].message.content
24
+
25
+ return message
26
+
27
+ def question_answer(chat_history, question):
28
+ import requests
29
+ API_URL = "https://api-inference.huggingface.co/models/BAAI/bge-large-zh-v1.5"
30
+ headers = {"Authorization": f"Bearer {os.getenv('HUGGINGFACE_API_KEY')}"}
31
+
32
+ payload = {
33
+ "inputs": question,
34
+ }
35
+
36
+ response = requests.post(API_URL, headers=headers, json=payload)
37
+ e = response.json()
38
+
39
+ search_result = client.search(
40
+ collection_name="test_collection", query_vector=e, limit=20
41
+ )
42
+ txt = '\n'.join([r.payload['text'] for r in search_result])
43
+ print(txt)
44
+
45
+ prompt = f"现在你是一个资深的工程师管家,我将相关的信息已经从数据库中通过向量搜索给你了,如下\n{txt}\n, 根据这些信息回答我的这个问题\n{question}\n,"\
46
+ "尽量简短以及用数值去说明,如果并没有答案,请回答我不知道。"
47
+
48
+ answer = chat(prompt)
49
+ chat_history.append([question, answer])
50
+ return chat_history
51
+
52
+ with gr.Blocks(css="""#chatbot { font-size: 14px; min-height: 1200; }""") as demo:
53
+ gr.Markdown(f'<center><h3>Demo</h3></center>')
54
+ with gr.Row():
55
+ with gr.Group():
56
+ # with gr.Accordion("pdf file"):
57
+ # file = gr.File(label='Upload your PDF/ Research Paper / Book here', file_types=['.pdf'])
58
+ question = gr.Textbox(label='Enter your question here')
59
+ btn = gr.Button(value='Submit')
60
+
61
+ with gr.Group():
62
+ chatbot = gr.Chatbot(label="Chat History", elem_id="chatbot")
63
+
64
+ btn.click(
65
+ question_answer,
66
+ inputs=[chatbot, question],
67
+ outputs=[chatbot],
68
+ api_name="predict",
69
+ )
70
+
71
+ demo.launch(share=True)